

图1. 四种面心立方结构纳米金团簇的激发态弛豫过程示意图。
扫描二维码阅读原文
2) 韩国延世大学的Lee Dongil、美国西密歇根大学的Ramakrishna Guda和韩国崇实大学的Joo Sang-Woo 等人合作,报道了氮基荧光素(aminofluorescein)连接在Au22团簇表面可以作为有效的PH探针。研究发现,光激发Au22团簇后会发生从团簇到荧光素的超快能量转移,从而在PH值4.3-7.8范围内实现荧光160倍的增强。飞秒时间分辨瞬态吸收结果表明,Au22中存在核内弛豫和能量转移的相互竞争过程,而从金核到荧光素分子的能量转移在pH值较高时占主导,从而极大增强了荧光素的发光(如图2所示2)
图2. Au22团簇与氮基荧光素连接后的光激发态弛豫机理图。
扫描二维码阅读原文

图3. 不同炔基配体保护的Au22团簇辐射与非辐射跃迁速率对比图。
扫描二维码阅读原文
图4. (a)金团簇通过增加Au4单元的生长模式图;(b,c) 8种新预测的同分异构的团簇结构。
扫描二维码阅读原文
图5. Cu11团簇的晶体结构与荧光光谱图。
扫描二维码阅读原文
图6. 两种Au8团簇的实验太赫兹拉曼光谱(上)与理论计算结果(下)。
扫描二维码阅读原文
参考文献
1. Zhou, M.; Zeng, C.; Sfeir, M. Y.; Cotlet, M.; Iida, K.; Nobusada, K.; Jin, R., Evolution of Excited-State Dynamics in Periodic Au28, Au36, Au44, and Au52 Nanoclusters. J. Phys. Chem. Lett. 2017, 8 (17), 4023-4030.
2. Pyo, K.; Ly, N. H.; Han, S. M.; Hatshan, M. b.; Abuhagr, A.; Wiederrecht, G.; Joo, S.-W.; Ramakrishna, G.; Lee, D., Unique Energy Transfer in Fluorescein-ConjugatedAu22 Nanoclusters Leading to 160-Fold pH-Contrasting Photoluminescence. J. Phys. Chem. Lett. 2018, 9 (18), 5303-5310.
3. Ito, S.; Takano, S.; Tsukuda, T., Alkynyl-Protected Au22(C≡CR)18 Clusters Featuring New Interfacial Motifs and R-Dependent Photoluminescence. J. Phys. Chem. Lett. 2019,10 (21), 6892-6896.
4. Xu, W. W.; Duan, X.; Zeng, X. C., Modulation of the Double-Helical Cores: A New Strategy for Structural Predictions of Thiolate-Protected Gold Nanoclusters. J. Phys. Chem. Lett. 2020, 11 (2), 536-540.
5. Li, H.; Zhai, H.; Zhou, C.; Song, Y.; Ke, F.; Xu, W. W.; Zhu, M., Atomically Precise Copper Cluster with Intensely Near-Infrared Luminescence and Its Mechanism. J. Phys. Chem. Lett. 2020, 11 (12), 4891-4896.
6. Kato, M.; Shichibu, Y.; Ogura, K.; Iwasaki, M.; Sugiuchi, M.; Konishi, K.; Yagi, I., Terahertz Raman Spectroscopy of Ligand-Protected Au8Clusters. J. Phys. Chem. Lett. 2020, 11 (19), 7996-8001.
7. Zhou, M.; Higaki, T.; Hu, G.; Sfeir, M. Y.; Chen, Y.; Jiang, D.-e.; Jin, R., Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters.Science 2019, 364 (6437), 279-282.
8. Zhou, M.; Higaki, T.; Li, Y.; Zeng, C.; Li, Q.; Sfeir, M. Y.; Jin, R., Three-Stage Evolution from Nonscalable to Scalable Optical Properties of Thiolate-Protected Gold Nanoclusters. J. Am. Chem. Soc. 2019, 141 (50), 19754-19764.
9. Zhang, M.-M.; Li, K.; Zang, S.-Q., Progress in Atomically Precise Coinage Metal Clusters with Aggregation-Induced Emission and Circularly Polarized Luminescence.Adv. Opt. Mater. 2020, 8 (14), 1902152.
10. Huang, J.-H.; Wang, Z.-Y.; Zang, S.-Q.; Mak, T. C. W., Spontaneous Resolution of Chiral Multi-Thiolate-Protected Ag30 Nanoclusters. ACS Central Science 2020, DOI:10.1021/acscentsci.0c01045.
11. Li, Y.; Higaki, T.; Du, X.; Jin, R., Chirality and Surface Bonding Correlation in Atomically Precise Metal Nanoclusters. Adv. Mater. 2020, 32 (41), 1905488.

本文版权属于X-MOL(x-mol.com),未经许可谢绝转载!欢迎读者朋友们分享到朋友圈or微博!
长按下图识别图中二维码,轻松关注我们!

点击“阅读原文”,查看 化学 • 材料 领域所有收录期刊




