吡啶前体合成金刚石纳米线示意图。图片来源:JACS [7]
近日,美国卡内基科学研究所的Samuel G. Dunning和Timothy A. Strobel等研究者在JACS 杂志上发表论文,成功预测并合成了一种以哒嗪为前体的金刚石纳米线材料。成功的关键在于哒嗪前体中的杂原子(即氮原子),它们通过选择特定的环加成反应途径来引导哒嗪聚合,形成碳纳米线。这些杂原子被作者称为“线导向”基团(thread-directing group)。与以前的纳米线相比,合成的聚哒嗪纳米线显示出基本均匀的化学结构和罕见的长程有序,可使用振动光谱和 X 射线衍射进行结构表征。
纳米线结构的表征及计算模拟。图片来源:JACS
“如果想为特定应用设计材料,准确了解我们正在制造的纳米线结构至关重要,这种杂原子导向的方法可以实现这一点”,Samuel G. Dunning说,“两个氮原子的引入,相当于从环中除去了两个反应位点,这大大减少了可能的反应数量,合成了令人难以置信的有序纳米线。”研究者下一步计划确定这种材料的机械、光学和电子特性,并寻找金刚石纳米线的独特应用。[9] 原文(扫描或长按二维码,识别后直达原文页面):Solid-State Pathway Control via Reaction-Directing Heteroatoms: Ordered Pyridazine Nanothreads through Selective CycloadditionSamuel G. Dunning*, Li Zhu, Bo Chen, Stella Chariton, Vitali B. Prakapenka, Maddury Somayazulu, and Timothy A. Strobel*J. Am. Chem. Soc., 2022, 144, 2073–2078, DOI: 10.1021/jacs.1c12143 参考文献:[1] T. Fitzgibbons, et al. Benzene-derived carbon nanothreads. Nature Mater. 2015, 14, 43-47. DOI: 10.1038/nmat4088[2] Scientists use 'smallest possible diamonds' to form ultra-thin nanothreadshttps://www.psu.edu/news/research/story/scientists-use-smallest-possible-diamonds-form-ultra-thin-nanothreads/ [3] R. E. Roman, et al. Mechanical Properties and Defect Sensitivity of Diamond Nanothreads. Nano Lett. 2015, 15, 1585-1590. DOI: 10.1021/nl5041012[4] E. Xu, et al. Systematic Enumeration of sp3 Nanothreads. Nano Lett. 2015, 15, 5124-5130. DOI: 10.1021/acs.nanolett.5b01343[5] T. Zhu, E. Ertekin, Phonons, Localization, and Thermal Conductivity of Diamond Nanothreads and Amorphous Graphene. Nano Lett. 2016, 16, 4763-4772. DOI: 10.1021/acs.nanolett.6b00557[6] H. Zhan, et al. Diamond Nanothread as a New Reinforcement for Nanocomposites. Adv. Funct. Mater. 2016, 26, 5279-5283. DOI: 10.1002/adfm.201600119[7] Xiang Li, et al. Carbon Nitride Nanothread Crystals Derived from Pyridine. J. Am. Chem. Soc. 2018, 140, 4969-4972 DOI: 10.1021/jacs.7b13247[8] Arani Biswas, et al. Evidence for Orientational Order in Nanothreads Derived from Thiophene. J. Phys. Chem. Lett. 2019, 10, 7164-7171. DOI: 10.1021/acs.jpclett.9b02546[9] Discovered: An Easier Way To Create "Flexible Diamonds"https://carnegiescience.edu/news/discovered-easier-way-create-flexible-diamonds (本文由小希供稿)