图2. 乐高积木式的化学合成。图片来源:Nature
近日,UIUC的Martin D. Burke教授与Daniel J. Blair博士等人终于完成了这种技术升级。他们通过超共轭和空间位阻调节,开发了一种新型的四甲基N-甲基亚氨基二乙酸(TIDA)硼酸酯,高效地实现了Csp3-C键的自动化迭代构建。TIDA硼酸酯的稳定性有了明显改善,电荷密度分析显示电子密度的重新分布增强了N-B键的共价性,从而缓解了TIDA硼酸酯的水解问题;而羰基π-面的互补空间屏蔽则降低了TIDA硼酸酯与亲核试剂的反应性。此外,TIDA硼酸酯还保留了亚氨基二乙酸笼的独特特征,这对于通用自动化合成来说是必需的。相关成果发表在Nature 上。
Martin D. Burke教授与Daniel J. Blair博士。图片来源:UIUC[1]
首先,作者使用18O-H2O来探究MIDA硼酸酯1a的水解,并研究了N-B键作为碱性水溶液Csp3-Csp2 Suzuki-Miyaura偶联条件(THF/H2O,K2CO3,60 °C)下的主要水解机制(图3a),结果意味着需要开发一种MIDA衍生物来抑制N-B键的受阻Lewis酸碱对(frustrated Lewis pair, FLP)活性。如图3b所示,作者使用1H NMR研究了一系列MIDA衍生物(1b,3-9)在氘代溶剂(THF-d8/D2O,K2CO3,60 °C)中的稳定性,结果显示氮上带有大位阻基团的MIDA衍生物(3-5)显著增加了水解速率,而在亚氨基二乙酸主链上带有两个正丁基的衍生物(6)则几乎没变化,若将这些取代基替换成乙基(7)和甲基(8)则增加了稳定性。最后,作者制备了一种衍生自MIDA的四甲基化的大位阻硼酸酯9(TIDA),后者在碱性水溶液Csp3-Csp2交叉偶联条件下高度稳定,反应6 h后仍剩余超过99%。当Csp3-硼酸酯10和TIDA硼酸酯11b在Csp3-Csp2 Suzuki-Miyaura条件下进行反应时,能以较好的收率得到目标产物12并且TIDA硼酸酯得以保留,而MIDA硼酸酯11a却没有产生所需产物(图3c)。随后,作者测试了TIDA硼酸酯对iPrMgCl.LiCl的稳定性,该条件可促进 Csp3-Csp3键形成(图3d)。结果显示TIDA硼酸酯14b可耐受iPrMgCl.LiCl,以高产率和高立体选择性形成目标产物15,而MIDA硼酸酯14a在这些条件下却被裂解。需要指出的是,TIDA硼酸酯甚至还能耐受高反应性的tBuLi,从而以优异的非对映选择性形成产物18和19(图3e)。
原文(扫描或长按二维码,识别后直达原文页面):Automated iterative Csp3-C bond formationDaniel J. Blair, Sriyankari Chitti, Melanie Trobe, David M. Kostyra, Hannah M. S. Haley, Richard L. Hansen, Steve G. Ballmer, Toby J. Woods, Wesley Wang, Vikram Mubayi, Michael J. Schmidt, Robert W. Pipal, Greg. F. Morehouse, Andrea M. E. Palazzolo Ray, Danielle L. Gray, Adrian L. Gill, Martin D. BurkeNature, 2022, DOI: 10.1038/s41586-022-04491-w 参考资料:1. New set of chemical building blocks makes complex 3D molecules in a snaphttps://news.illinois.edu/view/6367/181028173