搜索
首页
大数快讯
大数活动
服务超市
文章专题
出海平台
流量密码
出海蓝图
产业赛道
物流仓储
跨境支付
选品策略
实操手册
报告
跨企查
百科
导航
知识体系
工具箱
更多
找货源
跨境招聘
DeepSeek
首页
>
“铋”不可少:Nat. Chem.报道Bi催化的自由基C-N键交叉偶联反应
>
0
0
“铋”不可少:Nat. Chem.报道Bi催化的自由基C-N键交叉偶联反应
X-MOL资讯
2023-06-14
4
导读:德国马克斯•普朗克煤炭研究所的Josep Cornella教授报道了低价态铋络合物(1)如何与氧化还原活性的烷基自由基前体进行单电子氧化加成并生成可表征的烷基铋(III)配合物,可作为Bi-C自由基平
金属催化的自由基交叉偶联反应使得传统的双电子极性断裂模式发生了概念性转变,并为有机化合物的构建提供了新途径,特别是基于烷基自由基的偶联反应已被证明在构建C(
sp
3
)-C/杂原子键方面具有巨大的潜力。近年来,光氧化还原催化和电化学合成领域的进展促进了上述合成策略的发展和应用,与第一排过渡金属催化结合之后尤其值得关注。当交叉偶联循环过程中需要单电子过程时,Fe、Co、Ni、Cu等占据优先位置,进而导致氧化还原过程可以通过(
n
)/(
n
+1)/(
n
+2)氧化态发生(图1a,右)。恰恰是这种特殊的化学行为导致某些前体(如:氧化还原活性酯(RAEs)、Katritzky盐(KSs))可以通过单电子转移(SET)的氧化加成产生相应的烷基自由基。另一方面,化学家在利用主族元素模拟过渡金属催化的氧化还原过程方面做出许多努力,例如:pnictogens可参与
S
N
2-型极性氧化加成,从而在(
n
)/(
n
+2)氧化还原催化循环中实现双电子控制,进而模拟后过渡金属(图1a,左)。然而,氧化还原活性亲电试剂的自由基氧化加成通常仅限于第一排过渡金属,并且主族金属配合物仍难以实现这一过程。
近年来,
德国
马克斯•普朗克煤炭研究所
的
Josep Cornella
教授团队证明了Bi(III/V)或Bi(I/III)催化循环如何实现C-F(
Science
,
2020
,
367
, 313-317,
点击阅读详细
)、C-O(
J. Am. Chem. Soc
.,
2020
,
142
, 11382)或C-H(
J. Am. Chem. Soc
.,
2021
,
143
, 12487)的成键以及其它反应(
J. Am. Chem. Soc.
,
2019
,
141
, 4235)。然而,尽管已知较重的主族元素可以产生持久且稳定的自由基,但化学家对铋自由基催化作用的研究还远远不够。近日,
Josep Cornella
教授课题组在
Nature Chemistry
上报道了
低价态铋络合物(1)如何与氧化还原活性的烷基自由基前体(如:烷基邻苯二甲酰亚胺酯和烷基Katritzky盐)进行单电子氧化加成并生成可表征的烷基铋(III)配合物,可作为Bi-C自由基平衡配合物(图1b,底部)。
此外,作者发现此过程产生的α-氨基烷基自由基易被Bi(II)氧化为可以被N-亲核试剂捕获的亚胺阳离子,从而实现了Bi催化自由基C-N键交叉偶联反应(图1b,顶部),而且不需要借助光氧化还原体系、化学氧化剂、外部碱或电化学装置。
图1. 解锁铋的单电子氧化加成过程。图片来源:
Nat. Chem.
由于Bi(I)中心
6
p
2
孤对电子的强亲核性,Bi(I)络合物(
1
)已被证明与烷基卤化物和三氟甲磺酸酯发生极性
S
N
2型反应。类似地,
1
能与一系列苄基(伪)卤化物(如:Cl、Br、I、甲磺酸盐)定量反应并生成苄基-铋(III)配合物(
5-8
,图2b),同时循环伏安法分析证明C-X(X=卤化物)键断裂应该是通过经典的
S
N
2途径进行。另外,电化学研究表明
1
可能与烷基氧化还原活性亲电试剂一起参与SET氧化加成过程(图2a),并且
1
与等量的四氯邻苯二甲酰亚胺(TCPhth)酯
2
反应后经SET、裂解、C
O
2
释放和自由基重组得到苄基铋(III)配合物
9
,可通过NMR、高分辨质谱(HRMS)和X-射线衍射分析进行表征。此外,KS
4
也能与
1
进行自由基加成反应并生成
10
。正如预期所示,非氯化邻苯二甲酰亚胺酯
3
与
1
混合时仍未反应。除了苄基之外,一级(
12
)或二级(
13
)RAEs也能发生同样的过程并得到稳定的烷基-铋(III)配合物,而三级RAEs(如:1-金刚烷羧酸衍生的RAEs)虽能与
1
反应,但得到的加合物不稳定并且不能在标准条件下进行表征。值得注意的是,该过程可以在芳基溴的存在下进行反应并以93%的收率获得唯一产物
11
,这说明该过程与经典的极性过渡金属氧化加成是正交的(图2b)。
另一方面,作者发现经典的
S
N
2反应对空间效应很敏感(>24 h for
14
),而相应RAE的单电子氧化加成在<5 min内就能定量形成配合物
12
。此外,作者发现配合物
9、12
和
13
在电子顺磁共振(
EPR
)光谱下具有活性,而
12
的低温EPR分析表明两个自由基物种以不同的速率衰变形成,这与C-Bi键的均裂相一致。事实上,用低温NMR监测
1
与环丙基甲基碘化物在黑暗中的反应(图2c),发现在-20 ℃反应1 h便可完全转化为环丙基甲基加合物
16
,再加热到50 °C会缓慢转化为开环化合物
18
(12 h后收率为35%),这表明
16
中的C-Bi键发生均裂并形成笼内自由基对(
int-1
)。此外,将
16
的溶液用蓝色LED照射5 min后会完全转化为
18
,进而说明光可以加速自由基开环过程。然而,当环丙基甲基RAE
17
与
1
反应时未观察到
16
的类似物,但在黑暗中进行反应却能获得自由基开环产物
19
,这表明SET和RAE
17
的断裂形成笼内铋(II)/烷基自由基对(
int-1
),其中环丙烷开环比自由基重组更快,从而导致
19
的形成。
图2. 铋(I)的氧化加成。图片来源:
Nat. Chem.
如图3a所示,配合物
13
产生的二级烷基自由基与Michael受体(如:苯基乙烯砜)在黑暗中(收率:57%)或蓝光照射下(收率:85%)进行反应时均能得到Giese加成产物
21
。另外,配合物
13
在溶液中是稳定的(图2b),即使在60 ℃放置3天也不会反应;但在蓝光LED照射下却缓慢地转化为消除产物
15
和Bi(I)。值得注意的是,当作者试图分离脯氨酸衍生的α-氨基烷基-铋(III)加合物
23
时,却观察到脱羧胺化产物
24
的形成,同时回收Bi(I)络合物
1
(图3a,右),这可能是由于相应的α-氨基烷基自由基被高活性铋(II)物种氧化为亲电型亚胺阳离子,再与TCPhth阴离子反应形成C-N键。随后,作者对C-N键交叉偶联反应进行了条件优化,并得到最佳反应条件:即RAE
22
与苯并咪唑
25
在Bi(I)络合物
1
(10 mol%)为催化剂、DMA为溶剂的条件下于25 ℃反应2 h,可以88%的收率获得C-N键交叉偶联产物
26
(图3b),并且唯一观察到的副产物是TCPhth亲核竞争产物
24
和酰基转移产物
27
。对照实验表明无Bi催化剂时仅产生酰基转移产物,而添加TEMPO则完全抑制了反应。
图3. 烷基-铋配合物和α-氨基烷基-铋配合物的反应性研究。图片来源:
Nat. Chem.
在最优条件下,作者对C-N键交叉偶联反应的底物范围进行了考察(图4),结果表明天然/非天然α-氨基酸(如:脯氨酸(
26
)、苯丙氨酸(
29
)、缬氨酸(
30
、
34
)、亮氨酸(
35
)、谷氨酸(
36
)、哌可酸(
32
、
33
))衍生的RAEs均能兼容该反应,以良好的产率获得C-N键偶联产物。类似地,其它N-杂环(如:苯并咪唑(
26、28、45
)、三唑(
37
)、咪唑(
38、44、46
)、吡唑(
32、33、40-43
))也能顺利地转化为相应的C-N键偶联产物。有趣的是,非对称杂环(如:苯并三唑(
39
))也可以参与此转化,以5:1的N1/N2区域选择性获得相应产物。此外,该策略还可实现生物活性分子的后期修饰,包括:茶碱(
47
)、噻菌灵(
48
)、利鲁唑类似物(
49
)。值得一提的是,在无外加亲核试剂的情况下,α-氨基RAEs(
24
)和α-氧代RAEs(
50
、
51
)都能通过C
O
2
释放得到脱羧胺化产物,这是对Gregory C. Fu报道光化学策略的补充,允许使用α-杂原子RAEs代替无电性差异的烷基底物。
图4. 底物拓展。图片来源:
Nat. Chem.
为了进一步探究反应机理,作者进行了一系列实验(图5),结果表明:1)
1
(10 mol%)与α-氨基RAE
22
在DMF-
d
7
为溶剂的条件下进行反应时,NMR监测表明α-氨基烷基-铋(III)中间体
23
会随着RAE的消耗而增加,并与Bi(I)络合物
1
共存;2)配合物
23
可以由
1
与
22
的反应进行表征;3)积累的
23
在-20 °C放置1 h后衰变为
1
(Bi(I/II/III)路径),并且RAE
22
产生脱羧胺化产物
24
的速率高于前一过程。因此,作者考虑到另一种途径,即相应的笼内自由基对直接通过SET进行反应生成亚胺阳离子并再生Bi(I)(Bi(I/II)途径)。或者,上述自由基对经自由基重组导致
23
的积累,并最终生成产物
24
和
1
。总的来说,自由基氧化加成似乎是主导途径的决速步,正如
1
在整个反应过程中持续存在所表明的那样。重要的是,低温EPR光谱可以检测到强烈的单线信号,这与相应的α-氨基烷基自由基片段的存在相一致。此外,即使在黑暗中也能观察到这种强烈的EPR信号,进而说明Bi(I/II)在无外部光照射下也能促进这种反应性。
图5. 机理研究。图片来源:
Nat. Chem.
总结
Josep Cornella教授课题组展示了铋(I)配合物如何与氧化还原活性的烷基自由基前体(如:烷基邻苯二甲酰亚胺酯和烷基Katritzky盐)进行单电子氧化加成并生成可表征的烷基铋(III)配合物,可作为Bi-C自由基平衡配合物。此外,作者发现此过程产生的α-氨基烷基自由基易被Bi(II)氧化为可以被N-亲核试剂捕获的亚胺阳离子,从而实现了Bi催化自由基C-N键交叉偶联反应,并且不需要借助光氧化还原体系、化学氧化剂、外部碱或电化学装置。总的来说,这些发现开辟了一个主族元素自由基偶联的领域,并为Bi自由基催化的相关转化铺平了道路。
原文(扫描或长按二维码,识别后直达原文页面):
Bismuth radical catalysis in the acti
vat
ion and coupling of redox-active electrophiles
Mauro Mato, Davide Spinnato, Markus Leutzsch, Hye Won Moon, Edward J. Reijerse, Josep Cornella
Nat. Chem
.,
2023
. DOI: 10.1038/s41557-023-01229-7
导师介绍
Josep Cornella
https://www.x-mol.com/university/faculty/166344
(本文由
吡哆醛
供稿)
点击“
阅读原文
”,查看
化学 • 材料
领域
所有收录期刊
【声明】内容源于网络
0
0
X-MOL资讯
“X-MOL资讯”隶属于X-MOL学术平台(官网x-mol.com),关注化学、材料、生命科学、医学等领域的学术进展与科研前沿,提供专业与深度的内容。公众号菜单还提供“期刊浏览”等强大功能,覆盖各领域上万种期刊的新近论文,支持个性化浏览。
内容
19833
粉丝
0
关注
在线咨询
X-MOL资讯
“X-MOL资讯”隶属于X-MOL学术平台(官网x-mol.com),关注化学、材料、生命科学、医学等领域的学术进展与科研前沿,提供专业与深度的内容。公众号菜单还提供“期刊浏览”等强大功能,覆盖各领域上万种期刊的新近论文,支持个性化浏览。
总阅读
1.6k
粉丝
0
内容
19.8k
在线咨询
关注