高超声速飞行器作为21世纪世界航空航天领域重要的发展方向之一,将给世界军事带来重大变革,形成新的空天对抗焦点。高超声速这一概念最早由我国空气动力学专家钱学森先生在他的《论高超声速相似律》中提出,高于5倍声速的速度被称为高超声速。高超声速飞行器一般在距离地面20~100 km的高度飞行,通过加装各种装备和机载系统,对地观测、通信、情报搜集等方面完成一般飞行器无法完成的任务。具有飞行速度快、覆盖范围广、机动性强、不易被追踪等众多优点,目前世界各国都在积极展开对高超声速飞行器的研究。
红外成像制导在高超声速飞行器的末制导领域占有重要地位,具有制导精度高、抗干扰能力强以及灵敏度高等特点。携带红外成像设备的高超声速飞行器在高速飞行时其光学窗口周围会产生复杂的高速流场,引起气流密度、温度以及组成成分变化等,对光学成像探测系统造成传输干扰,导致目标图像出现模糊、变形、抖动和对比度下降等。
同时,光学窗口与外界气流直接接触发生剧烈摩擦,产生的高温激波使窗口温度快速升高。窗口热辐射能量经过光学系统达到探测器光敏面形成非均匀辐射噪声,严重影响了光学设备对目标特征的识别和对目标轨道的判断, 从而无法捕捉和跟踪目标。
维恩定律揭示了黑体辐射的峰值波长与温度成反比,当黑体温度越高,辐射峰值波长越短(见图1)。此外,由于大气的吸收在1~3μm、3~5μm和8~14μm三个波段内相对较弱,且光线穿透能力较强,这三个区域被称为“大气窗口”(如图2所示)。现阶段高超声速飞行器携带的红外设备工作波段主要集中在中波(3~5μm)和长波(8~14μm),根据高超声速飞行器飞行环境、目标辐射特性以及背景辐射特性可选择适合的工作波段。


图 2 大气透射光谱图
国内外对于高超声速飞行器红外设备的工作波段特性相关报道的工作主要集中在对高超声速飞行器的蒙皮、尾焰、背景以及HTV-2和X-51 A等不同目标辐射特性进行理论模型仿真及计算分析。
针对高超声速飞行器的高温窗口辐射特性,国内外开展了一系列研究工作,主要集中在透过率、热辐射值等辐射特性仿真建模、数据获取和分析,研究的主要材料为蓝宝石、尖晶石、氟化镁、氧化钇等。
文中通过试验对比了中、长波热像仪对不同场景目标成像情况,分别测试了中、长波热像仪在不小于2.5Ma条件下地面火箭撬成像效果。以高超声速飞行器光学窗口为研究对象,验证了尖晶石、氧化钇、氧化锆以及硫化锌窗口热辐射分别对中、长波热像仪成像的影响,并且提出了新的高温窗口相对透过率测试手段,将会对后续的超高声速飞行器红外设备的工作波段选择以及窗口材料选择提供参考和支持。
1 中、长波热像仪不同场景成像对比
红外成像设备工作时易受到太阳辐射、海面反射、云层反射等自然环境干扰;烟幕、点源压制等有源干扰以及多伺服打击等战场干扰。通过对比中、长波热像仪对高温目标、太阳辐射、海面反射、云层反射、干扰弹以及俯仰偏航扰动等成像效果,选择适用于超高声速飞行器红外设备的工作波段,对于技术路线的选择和目标的检测、识别具有重要意义。
为验证中、长波热像仪对高温目标的成像效果,将打火机点燃后分别使用中、长波热像仪对其成像,对比效果图如图3所示,从图像可以观察出长波热像仪对打火机热源的热辐射不敏感,造成干扰影响较小。

图 3 打火机点燃后对比试验图
云层、水面的反射光干扰主要来源为太阳辐射,太阳光辐射的温度高达6000 K,太阳光红外辐射特性如图4 所示。可知太阳红外辐射主要集中在短、中波波段,在短波2~2.5 μm范围内太阳辐射很强,3~5 μm范围内太阳辐射较强,在长波波段的太阳辐射较弱。
图 4 太阳辐射光谱图
通过中、长波热像仪对海面、天空及太阳等场景成像效果对比分析可知(见图5),中波热像仪观测的太阳辐射、海面的“鱼鳞光”较明显,长波热像仪在抗太阳杂光、云层反射干扰方面占有优势。中波热像仪白天工作时,太阳散射、海面反射会产生较严重的干扰,阳光经海面反射后会在红外图像上形成高亮度区域(即形成镜面反射的海域),若目标以高亮度区域为背景,则会导致目标信噪比降低甚至被背景湮没,从而严重影响导引头锁定和跟踪目标,甚至丧失工作能力。对于长波红外8~14 μm波段,云层、海面反射的阳光在长波红外波段的响应较低,长波方案可避免水面反光、云层反光以及太阳辐射等干扰因素,提升系统探测和识别目标能力,并减少虚警干扰。

图 5 中、长波热像仪对太阳、云层、海面成像的对比试验图
干扰弹造成的干扰是通过研究波能量的吸收和衰减作用,使敌方光电设备和制导武器无法得到维持正常成像、观察、搜索和跟踪所需要的光波能量而失去作用。模拟干扰弹干扰进行对比试验,对比干扰弹在中、长波中的成像效果,由图6可知,干扰弹在刚开始燃烧阶段时温度较高,在中波波段的能量较强,目标场景完全被遮蔽,长波波段对高温不敏感,周围目标依然清晰可见。干扰弹燃烧后在长波波段的能量比较弱,在长波波段的抗干扰能力较强。
图 6 干扰弹试验中、长波对比效果图
(a)中波 (b)长波
此外,红外成像设备在观测成像过程中受到偏航俯仰扰动时产生像移,同样会导致图像模糊。分别对中、长波进行抗模糊分析,由于中、长波探测器器件差异,两者在积分时间上存在很大区别,中波探测器积分时间为毫秒级,长波探测器积分时间为百微秒级,分别选择中波和长波典型积分时间为2.5ms和0.25ms进行对比分析。
验证在同一扰动下,中波和长波的热像在有俯仰偏航扰动时抗模糊方面的效果,将中、长波热像仪共同固定在单轴转台上,在其前方架设平行光管,同时让单轴转台以40 °/s的速率进行往复的转动,在转动的过程中观察其对平行光管内十字靶标的成像效果。中波和长波热像对十字靶标的观测效果如图7所示。

图 7
(a)中波热像仪静止状态下观察十字靶效果图
(b)长波热像仪静止状态下观察十字靶效果图
(c)中波热像仪转动状态下观察十字靶效果图
(d)长波热像仪转动状态下观察十字靶效果图
当载体在俯仰方向以40 (°)/s的速率转动时,中波系统会引起4个像素的偏移量,长波系统偏移量为0.4个像素。长波系统因积分时间短,自身具备良好的抗运动模糊的能力,此外由于中、长波积分时间的差异,在相差10倍的积分时间内,长波在湍流场所引入的成像影响也会明显降低。
为了模拟高超声速飞行器在高速度、高动态飞行过程中红外设备的工作状态,分别对中、长波热像仪进行地面火箭撬试验。由于试验条件限制,火箭撬试验速度不小于2.5Ma,试验以硫化锌作为光学窗口,中波热像仪积分时间2.5ms,长波热像仪积分时间0.25ms,试验结果如图8所示。

图 8
(a)静止状态下中波热像仪成像效果图
(b)高速、高动态条件下中波热像仪成像效果图
(c)静止状态下长波热像仪成像效果图
(d)高速、高动态条件下长波热像仪成像效果图
对比中波热像仪在静止状态与高速、高动态运动状态的成像效果,由于中波热像仪本身积分时间较大,在高速、高动态状态下易出现明显的成像模糊现象。长波热像仪积分时间较小,在静止和高速、高动态速状态下均能清晰成像,可以减小高超声速状态带来的图像模糊、抖动和偏移等影响。
根据以上中、长波热像仪对不同场景对比试验结果可知,长波热像仪在抗太阳辐射干扰、海面反射干扰、云层反射干扰以及干扰弹干扰等方面占有优势,且抗运动模糊的能力较强。而中波热像仪对目标场景细节观测能力较强,目标细节成像效果较好。在实际应用中根据中波红外和长波红外的不同特点,利用中波/长波双色探测系统可以更有效的对目标进行联合成像,更好地实现对目标的识别、预警、跟踪等。
2 不同材料窗口热辐射对成像影响
高超声速飞行器由于飞行速度高、飞行时间长,光学窗口外表面的空气动力热造成窗口产生温度梯度,在材料上产生热张应力,从而造成窗口损坏以及热辐射影响正常成像,这是高超声速红外窗口面临的最主要的问题。为了满足实际的飞行要求,人们对整流罩和红外窗口的结构和材料等方面进行了研究。
应用于高速飞行下的红外光学窗口材料主要有氟化镁、蓝宝石、尖晶石、氧化钇、 氧化锆、硫化锌、金刚石等。其中氟化镁的应用最为成熟,但其硬度和抗热冲击性较低,多用于2Ma以下的飞行器中。蓝宝石在硬度和抗热冲击性上具有很好的性能表现,但其制作成本高。金刚石相比于其他材料除了满足基本需求外,具有更好的热力学性能,在高马赫数飞行状态下的长波红外制导系统中金刚石不可或缺,但因其制备成本高和制备技术难度大的问题制约了其发展。硫化锌是目前唯一可以实现应用的长波红外透射窗口材料,其具有较高的透过率和较宽的透射波段,在机械和热性能方面表现也比较不错。
为了验证不同材料光学窗口在高温条件下的热辐射对光学成像的影响,对比验证了中波窗口(尖晶石、氧化钇、氧化锆、硫化锌)、长波窗口(硫化锌)分别对中、长波热像仪的影响,如图9所示。

图 9 试验使用不同材料窗口
从左至右依次为:尖晶石、硫化锌、氧化锆、氧化钇
分别将中、长波热像仪开机,调整相对应平行光管的位置,使十字靶标在热像仪视场中心,将窗口加热后放置热像仪与平行光管之间,观察显示器上平行光管的十字靶标图像变化,不同温度的高温窗口对成像影响如表1~2所示。

表 2 长波窗口在各温度环境下的热像仪成像效果

以上试验表明窗口在高温条件下存在不同程度透过率下降情况,材料的高温透过率的下降意味着材料对该红外波长处吸收的增强,吸收增强必然导致红外辐射增强。为了验证高温条件下不同窗口透过率的衰减情况,测量窗口辐射量的相对增幅情况。
进行试验验证如图10所示。

图 10 透过率验证试验框图
(1)将黑体设置为50℃,20℃窗口置于黑体与热像仪中间,读取热像仪的AD值为A1;(2)将黑体设置为25℃,20℃窗口置于黑体与热像仪中间,读取热像仪的AD值为A2;(3)将黑体设置为50℃,高温窗口置于黑体与热像仪中间,读取热像仪的AD值为A3;(4)将黑体设置为25℃,高温窗口置于黑体与热像仪中间,读取热像仪的AD值为A4。
不同温度下窗口的透过率相对于20℃透过率的衰减率Y可根据公式(1)得出,试验结果如表3所示。

表 3 不同温度下窗口透过率衰减情况

对比中波窗口热辐射对中波热像仪成像影响时,尖晶石窗口在150℃时热像仪图像饱和,高温250℃和350℃时,热像仪图像出现饱和,无法正常成像,相对透过率降28%左右;氧化钇和氧化锆窗口在150℃时成像效果较差,高温250℃和350℃时,热像仪图像均出现饱和,无法正常成像,相对透过率下降12%和15%左右;硫化锌窗口热辐射的影响较小,高温时仍可观察到十字靶标。对比硫化锌窗口热辐射对中、长波热像仪成像影响时,硫化锌窗口在高温时中、长波热像仪图像成像质量影响均较小,相对透过率衰减均较小,且硫化锌材料折射率均匀一致性好,可以作为双色红外光学系统材料。
3 结 论
红外成像制导作为高超声速飞行器末端制导技术发展重要方向之一,面临着来自太阳辐射、海面反射、云层反射以及烟幕等带来的背景干扰、俯仰偏航扰动以及光学窗口热辐射干扰,易造成目标图像模糊、对比度下降、变形、抖动和非均匀辐射噪声等现象,严重影响了对目标特征的识别以及目标轨道的判断。
文中重点探讨和分析了红外制导设备的工作波段选择以及光学窗口热辐射影响。通过实验对比得出,中波系统具有对目标细节特征分辨能力较强的特征,长波系统因其波段特性和积分时间优势在抗干扰方面占有优势。硫化锌窗口在中、长波波段具有较好的低辐射、高透过率以及耐压等特性,适用于高超声速飞行器的光学窗口。此外,硫化锌可作为双色红外光学系统材料,进一步获取目标特征信息。
结束语:我们一起学习,阅读其过程中更进一步,
声明:部分内容来源于网络,仅供读者学术交充之目的。文章版权归原作者所有。如有不妥,请联系删除。