
不会分布数据?那可不行!【点击查看详细内容】
传统的错误假设是,人的一切状态都将影响到绩效。事实上,从“人到人力资源效能”的过程是以组织模式为介质的,组织模式确定了“什么员工应该在什么地方发挥什么作用”,换句话说,HR们需要把人放到一个组织中,查看其个人特征在组织内的“分布”对于组织的影响,有可能形成什么样的相互影响,这种影响是正面的还是负面的,而不是孤立地评价个体。这类指标既反映了人的分布合理性,也包括了组织模式的设计合理性。离职率、年龄分布、司龄分布、人才储备率、人才成长率等指标都是说明人在组织模式中的各种“分布”。
我们常见的一个误区是喜欢盘点一个表面数据。例如,盘点公司员工的平均年龄就很无聊,一个平均年龄为45岁的大企业并不一定是没有活力的,有可能他的50岁以上的员工很多,而这些员工分布在闲职上(企业的“换血计划”进行的调整),这拉高了平均年龄,但并没有降低企业活力。
以这个例子展开,这个时候有两种处理办法。第一是按照年龄在这个维度上细分,分出20-25岁,26-30岁,31-35岁……的不同组别,盘点出这些组别上的员工人数,发现年龄分布,这比平均年龄的表面数据有用多了。进一步,我们还可以根据一些假设来推导这种分布的影响。可以确认的是:第一,新人会对旧人形成冲击,让他们感觉到竞争;第二,假设同样的旧人,100个新人形成的冲击肯定要比10个新人形成的冲击大。那么,我们就可以设置一种算法来量化出这个企业从年龄角度分析出的竞争氛围,我把这种算法叫做“活力曲线值”。
第二是加入其它个性特征的维度进行列联分析,这样会让原本无用的数据产生出价值。例如,盘点出组织内员工的学历结构其实没有太大的意义,而一旦加入岗位分布的维度,我们就有可能发现管理岗位上累积了大量的高学历人才,而他们的职位普遍较低,这就有可是一种“可以开发的力量”。我们大可以想象一下,如果叠加多个维度的数据,这种分析将多有价值。例如,我们可以将绩效平均差排名企业内TOP10的管理岗位视为“高挑战岗位”,如果在这样的岗位上,员工的学历和人工成本支出仅仅排在TOP30,那么,这样的分布就不够合理。
记住这些曲线,你就能看透一切啦!【点击查看详细内容】
有了合理的组织模式,有了员工的高绩效特质,有了员工在组织模式中的合理分布,不代表可以自动产生高绩效。第一,员工队伍本来就是流动的,有流入,有流出,有内部流动,所以,人力资源的配置职能(招聘、淘汰、再配置)必须要发挥作用,以确保分布的合理性,让员工“有机会干”。第二,员工的行为既有好逸恶劳的一面,又有需要被调动出无私奉献的一面,始终需要人力资源制度的激励和约束,所以,人力资源的激励职能必须要发挥作用,让员工“有意愿干”。第三,员工自身的能力和知识储备也有不足,人力资源的培养职能必须要发挥作用,让员工“有能力干”。人力资源管理职能进行的干预(通过人力资源制度或政策),是加诸在组织模式和员工分布上的“外力”,实际上是现有人力资源管理的主要工作。盘点出这些职能在多大程度上发挥了作用,是往哪个方向上发挥了作用,才能和其他维度的数据形成整体的逻辑链条。
当前的问题是,HR在人力资源管理职能上的盘点“重程序而轻实质”,仅仅记录一些工作的痕迹,而忽略了要观察的“外力”。我们想要了解的,是这个企业人员流动的趋势是怎样的,哪些人流进来,按照怎样的标准向上流、向下流?这个企业的激励是不是真刀真枪,还是有顺风车和避风港?这个企业的培训后台是不是对员工有强力的支持,还是愿意让员工在干中学?从指标上说,新进率、流失率、轮岗率、晋升率、降职率等是反映调配职能的指标;绩效极差、平均差、薪酬分布曲线、绩效工资分布曲线等是反映激励职能的指标;员工培训普及率、人均培训学时、重点人才培训学时、人均投入培训成本、重点人才人均投入培训成本、培训学时分布曲线、培训成本分布曲线等都是反映培训职能的指标。


