AI 行业关注重点及催化因素经过几十年发展,AI 技术公司、新算法层出不穷,图像识别、语音识别等 技术红利快速释放,但过去十年主要仍基于深度学习算法。行业生态体系 更为明晰,单技术同质化明显,竞争力主要体现在落地场景的丰富程度和 具体细节,且多模能力组合、赋能其他行业时 AI 技术与专业知识的结合成 为趋势。本文主要总结了三类 AI 技术商业模式、四类主要行业参与者,建 议关注以下方面:1)收入构成及确认方式:由于 AI 使用场景丰富,若是集成类政企项目, 单个厂商较难具备完整能力,通常变为硬件销售为主,软件收入占比 低,拉低整体盈利水平,且收入进度受客户项目验收节奏影响,降低 运营指标,影响现金流;2)AI 赋能行业还是行业反哺 AI:以海康威视为代表的传统硬件公司已蝉 联八年安防行业市场份额第一,对下游客户的需求具备深刻洞察,且 有较强供应链管理能力,在此基础上发展 AI 能力市场目标更为明确;类似如字节跳动的 AI 能力主要基于今日头条 App、抖音生态等自身业 务需求,再做技术外溢;阿里的强项主要也与电商业务和商品推荐有 关。纯粹技术厂商需对市场需求和客户使用场景有足够的经验积淀, 才能形成差异化竞争优势。3)标准化程度高、可规模复制的产品可解盈利之困:当前 AI 独角兽厂商 所接定制化、私有化的项目订单较多,无法形成规模化复制优势,导 致人均效益偏低。以科大讯飞为例,To C 产品高度标准化,可随市场 份额提升、学习机等产品出货量、学智网订阅量增加而摊薄制造成本 与研发、销售费用投入,提升盈利水平。4)数据是 AI 发展重中之重:人工智能三要素算法、算力、数据中毫无疑 问数据最重要,当前算法同质化严重,算力过剩,数据量大却精细度 不足。大数据、数据仓库、数据分析相关公司或成为投资机会,建议 关注数据处理公司龙头明略科技。5)人员成本下降或迎来行业拐点:AI 市场水大鱼大,随着各个行业场景 落地,市场对 AI认知更清晰,可选的供应商范围更多。当前 AI 行业商 业模式类似咨询公司,未来人才供给增加,一级市场泡沫破裂后人员 成本下降或许带来利润水平会上升,给行业带来结构性变化。