
全球卫星导航系统(GNSS:Global Navigation Satellite System)是一种以卫星为基础的无线电导航系统,系统可提供时间/空间基准和所有与位置信息相关的实时动态信息,又称天基系统。GNSS是否就是GPS?答案是否定的,GNSS包含了多个国家不同的星座系统,主要有美国的GPS系统,欧盟的伽利略系统,俄罗斯的GLONASS系统,中国的北斗系统等另外还有其他的些区域定位系统,如日本QZSS等。



图2 伪距测量
另外一种距离信息是载波相位测距,载波相位测距不是基于信号空间传播时间完成测量,而是利用了电磁波的相位周期性完成测量;由于GNSS信号是电磁波,相位具有周期性,因此真实的相位应该是N个整周+一个非整周相位,非整周部分可以通过锁相环精确获得,而整周部分N不确定,需要通过其他手段确定,即Cp=(N+γ)*入,其中N为整周,γ一般是未知的,为非整周部分,λ为信号波长。

图3 载波相位测距
载波相位测距与伪距有何区别?主要区别是精度不同,伪距精度一般是~1m,当载波相位整周模糊度固定正确时,精度为~0.001m,因此基于伪距定位精度一般是米级,根据载波相位定位度可以达到cm级。我们获取到卫星到接收机的距离时,需要结合哪些信息计算接收机的位置呢?其实我们还有另外一个信息.星历信息,根据星历信息我们可以获取到卫星在各时刻的位詈及速度,结合卫星位置以及卫星与接收机之间的距离,通过最小二乘法或者扩展卡尔曼滤波等方法可以确定接收机的位置。





图6 差分定位示意图
差分定位优点:
①消除或减弱一些具有系统性误差的影响;
②减少平差计算中未知数的个数。
差分定位缺点:
①原始独立观测量通过求差将引起差分量之间的相关性;
②平差计算中,差分法将使观测方程数明显减少。
二、RTK算法基本原理
RTK算法是前最常用的GNSS高度定位技术,在开阔场景下,定位度达cm级,且在几秒内就可以完成。
上节我们介绍了测量误差的修正,当误差修正后我们可以采用修正后的距离测量信息,计算定位结果,高精度定位必须采用载波相位进行定位,但是载波相位存在整周模糊度问题,即必须精确已知整周模糊度才能够获取精确的定位结果,因此RTK算法的核心是整周模糊度固定。
理论上,整周模糊度N必须是整数但是我们根据最小二乘法或者卡尔曼滤波估计得到的N不是整数,而是实数,如何根据实数获取到整数呢?最基本的方法是搜索即历实数N附近的所有整数,评估定位误差选取误差最小的整数组合即为真实的整周N。由于测量信息中存在载波相位和伪距,二者量测精度差异较大,导致整周模糊度搜索空间巨大,复杂度高,因此我们可以通过数据转换,消除各参数之间的相关性,缩小搜索空间,从而提升算法效率,常用的方法有lambda等。如下图所示:参数变换前后,搜索空间明显减小。

图7 参数空间变换前后搜索空间对比
三、RTK算法缺点及改进方法
RTK定位在较为开阔环境下定位可达厘米级性能满足高定位要求,但是在复杂环境下定位性能无法保证,因此无法通过单独依靠RTK完成全场景高精度,我们必须通过其他手段来提升定位精度,主要有以下几个方案:1、通过大量历史数据分析,直接优化RTK算法;2、通过结合惯性传感器,利用组合导航的优势提升定位性能;3、采用其他短离高度定位的方式,比如蓝牙定位以及NFC定位等。
四、成果应用及意义
高精度定位技术是一种非常精密、复杂的精确导航技术。在交通运输、测量测绘、无人机定位、自动驾驶、共享两轮车等领域中具有广泛的应用,它已经成为现代社会中不可或缺的一部分。
转载自网络 如有侵权请联系删除

