大数跨境
0
0

10月7日论文推荐(附下载地址)

10月7日论文推荐(附下载地址) 学术头条
2018-10-07
1
导读:该论文提出了一种Multi-Level Embedding Framework(MILE)。

论文名:

MILE: A Multi-Level Framework for Scalable Graph Embedding

会议/年份:arXiv 2018


作者:


Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy


推荐理由:


该论文提出了一种Multi-Level Embedding Framework(MILE)。该框架在进行Graph Coarsening时使用的是Structural Equivalence Matching(SEM)和Normalized Heavy Edge Matching(NHEM)。SEM会匹配那些邻居完全相同的点对,NHEM根据归一化的边权大小来匹配。与HARP最大的不同之处在于MILE只在最后一个level(即Coarsest Graph)上用现有的Graph Embedding方法来学一个Base Embedding。其余level的Embedding根据一个多层的图卷积神经网络从 Base Embedding 开始Refine得到。这样做的一个最直接的好处就是时间、空间效率会有大幅提升,因为只需要在Coarsest Graph上学Embedding。图卷积神经网络的参数在level之间是共享的,并且是根据Base Embedding来学的(有点trick)。



Abstract


Recently there has been a surge of interest in designing graphembedding methods. Few, if any, can scale to a large-sizedgraph with millions of nodes due to both computational com-plexity and memory requirements. In this paper, we relaxthis limitation by introducing the MultI-Level Embedding(MILE) framework – a generic methodology allowing contem-porary graph embedding methods to scale to large graphs.


MILE repeatedly coarsens the graph into smaller ones us-ing a hybrid matching technique to maintain the backbonestructure of the graph. It then applies existing embeddingmethods on the coarsest graph and refines the embeddingsto the original graph through a novel graph convolution neu-ral network that it learns. The proposed MILE frameworkis agnostic to the underlying graph embedding techniquesand can be applied to many existing graph embedding meth-ods without modifying them. 


We employ our framework onseveral popular graph embedding techniques and conductembedding for real-world graphs. Experimental results onfive large-scale datasets demonstrate that MILE significantlyboosts the speed (order of magnitude) of graph embeddingwhile also often generating embeddings of better quality forthe task of node classification. MILE can comfortably scaleto a graph with 9 million nodes and 40 million edges, onwhich existing methods run out of memory or take too longto compute on a modern workstation.


论文下载链接

https://www.aminer.cn/archive/mile-a-multi-level-framework-for-scalable-graph-embedding/5ac1829d17c44a1fda9182c2


后台回复“LFW”获取"Labeled Faces in the Wild: A Survey"


您还可在后台回复“知识图谱”免费获取AMiner知识图谱数据集。


回复“信息学会”,可获取由中国中文信息学会发布的《2018知识图谱发展报告


免费福利


赠书|人工智能大牛教授周志华—《机器学习》

活动|学术精准推送系统免费试用

中国中文信息学会发布《2018知识图谱发展报告》(内附PDF)

AMiner知识图谱数据集开源,欢迎大家下载使用


 

后台回复如下对应关键词可获取研究报告(菜单栏可直接下载)

自动驾驶 

机器翻译 

机器人

行为经济学

区块链

通信

自然语言处理 

计算机图形学

超级计算机

3D打印

智能机器人




关注我们

你想要的科技资讯都在这



戳阅读原文下载此论文

【声明】内容源于网络
0
0
学术头条
致力于学术传播和科学普及,重点关注大模型、AI4Science 等前沿科学进展。
内容 1019
粉丝 0
学术头条 致力于学术传播和科学普及,重点关注大模型、AI4Science 等前沿科学进展。
总阅读0
粉丝0
内容1.0k