
作者:陆元福(北京邮电大学,腾讯微信搜索应用部)、方元(新加坡管理大学)、石川(北京邮电大学)
会议:In Proceedings of the 26nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2020)
背景
大部分现有工作从数据层面尝试缓解冷启动问题,例如融合额外信息作为用户或商品的特征,或者利用异质信息网络来捕获结构和语义信息。在模型层面,元学习方法为缓解冷启动问题提供了一些新思路。但已有方法通常直接将元学习框架(如MAML)用于冷启动问题,而忽略了推荐中的异质图结构和语义信息。


协同适应元学习器
基础模型
基础模型包括用于生成用户表示的上下文聚合函数,和用于预测评分的偏好预测函数。在上下文聚合中,用户的表示由其上下文聚合而来,即:



协同适应

本文在三个冷启动推荐场景和一个传统推荐场景下验证 MetaHIN 的有效性,进行模型分析和参数分析。在三个公开数据集上,实验结果如下表所示。可以看到,我们提出的 MetaHIN 在各个数据集上都有较好的表现。同时,我们还做了一些参数实验,具体结果可参考论文。相关论文及代码已经发布在实验室主页 http://www.shichuan.org 及 https://yuanfulu.github.io 上,欢迎关注。







