蛋白质设计领域又迎来了一项里程碑式的时刻——
“上帝之手”、华盛顿大学生物化学教授 David Baker 团队及其合作者,首次利用生成式人工智能(AI)技术从零开始设计出了一种新型抗体,将抗体疗法推向了一个全新的高度。
据 Nature 报道,这一工作提出了将人工智能驱动的蛋白质设计带入价值数千亿美元的治疗性抗体市场的可能性。
图|抗体(粉色)与流感病毒蛋白(黄色)结合(艺术构思)。(来源:Juan Gaertner/Science Photo Library)
相关研究论文以“Atomically accurate de novo design of single-domain antibodies”为题,已发表在预印本网站 bioRxiv 上。
英国牛津大学免疫信息学家 Charlotte Deane 评价道:“这是一项非常有前景的研究,它代表了将人工智能蛋白质设计工具应用于制造新抗体的重要一步。”
让抗体设计更快、更容易
人工智能设计的抗体,能用吗?
利用这种方法,研究团队设计出了数千种抗体,这些抗体能识别几种细菌和病毒蛋白质(比如流感病毒用来入侵细胞的蛋白质)的特定区域以及一种抗癌药物靶标。
然后,他们在实验室中制作了这些设计的一个子集,并测试了这些分子是否能与正确的靶点结合,进而验证了抗体卓越的有效性。
例如,表面等离子共振(SPR)等技术,可以验证 VHH 与目标抗原的结合能力。实验结果显示,设计的 VHH 能够与目标抗原特异性结合,并表现出一定的结合亲和力。
另外,X 射线晶体学或/和冷冻电镜技术,可以解析 VHH 与目标抗原的复合物结构。结构解析结果显示,设计的 VHH 与目标抗原形成特定的结合模式,VHH 的关键残基与抗原表位发生特异性相互作用,进一步证明了设计的抗体具有与目标抗原结合的能力。
最后,通过 SPR 等技术,研究团队对 VHH 与目标抗原的结合亲和力进行了验证。结果显示,设计的 VHH 与目标抗原之间存在一定的结合亲和力,其亲和力值反映了两者之间的结合强度和稳定性。
以上这些结果,为设计的抗体的进一步应用和开发提供了重要的实验基础和支持。
然而,该研究也存在一些局限性。首先,设计的 VHH 在结合亲和力和特异性方面仍有待进一步优化和提高;其次,设计的 VHH 主要针对单一抗原进行了验证,对于多种抗原或复杂疾病的治疗效果尚待验证;另外,抗体的免疫原性、稳定性和生产成本等方面也需要进一步研究和解决。
蛋白质设计,充满无限可能



