文章转载自:同济大学

2022年1月17日,我国学者在国际权威刊物《美国化学会志》(Journal of the American Chemical Society)上发表了题为“基于UdgX的在单碱基分辨率水平上的DNA脱氧尿嘧啶的检测技术”的研究论文。借助被称之为UdgX的特殊的酶分子,该研究发明了灵敏性好、特异性强和分辨率高的DNA脱氧尿嘧啶(dU)检测技术,第一次用酶法在单碱基分辨率水平上精准检测DNA中的dU,实现了DNA中dU碱基检测技术的根本性突破。
众所周知,DNA是生物体的遗传密码。通常认为它们包括腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C)四个碱基。后来的研究发现,DNA中还存在另外的碱基dU。这些碱基共同组成了DNA的基本元素。但是,迄今为止人类还难以从单个碱基分辨率水平上检测到dU。这构成了DNA序列检测的盲区和瓶颈之一,严重阻碍了对dU的功能的认知和对DNA遗传密码的理解。
从原核生物到真核生物,从单细胞生物到人类,除外A、T、G和C,它们的DNA中还包含着比例不等的dU。在艾滋病毒的DNA中,每二十个碱基就有一个以上的dU;而在疟原虫的DNA中,dU占碱基的比例大约为十万分之一。dU既能通过C碱基脱氨产生,又能“冒充”T碱基掺入到基因组中。由于缺乏敏感又特异的单碱基分辨率的dU测序技术,迄今为止人类并没有像其它碱基(A、T、G和C)那样实现dU在DNA中的精准定位。也就是说,现在的dU检测技术可以证实若干碱基中存在dU碱基,但是并不能确定dU碱基位于什么样的具体的碱基之间。dU碱基的生物学意义是什么?dU碱基在疾病发生发展中的意义又是什么?要回答这些问题,唯有取得单碱基分辨率水平上的dU碱基的检测和定位的突破,这是前提条件。
dU具有双面性,它有时充当人类健康的朋友,有时又可能是人类健康的敌人。许多报道发现,当机体面对不同抗原时,免疫细胞需要dU作为中间体,产生多种多样的抗体,帮助抵御诸如新冠病毒之类的病原体对人类的侵害。而当肿瘤或者心血管疾病患者体内出现dU时,则可能导致患者的基因组的不稳定,加速这些患者病情的发展。显然,精准检测dU在DNA中的分布情况,将有助于评估人类个体的生理学机能和疾病的预后。
然而,寻找DNA中dU的精确位置如同大海捞针,属于科学难题。我国学者经过多年的探索,最终发明了优越的单碱基分辨率的dU测序技术。该测序技术可以简要地叙述如下:首先研究人员找到一个合适“钩子”——一类耻垢分枝杆菌来源的名为UdgX的新型糖苷酶。UdgX能够将DNA的dU切除,形成一个缺口,并同时与对应的核糖形成共价键,最终将其捕获。作为“钩子”的UdgX “钓”到含dU的DNA片段后,还需要进一步确定dU位置。接下去,研究人员发挥DNA高保真聚合酶特性。这个酶就如同行驶在DNA轨道上的列车,当碰到被UdgX标记的dU的缺口时,会被动地原地“停车”。然后,研究人员结合高通量测序技术,将“停车”信号放大,最终在单个碱基的水平上精确地定位dU在DNA乃至基因组上的位置。以上介绍了单碱基分辨率的dU测序技术。研究人员进一步地概括了该技术,他们用一句话总结了该技术,这句话为:依靠UdgX并结合DNA高保真聚合酶的dU测序技术。为了便于该测序技术的传播和普及,他们将该技术命名为Ucaps-seq。从此,一个基于UdgX的在单碱基分辨率水平上的dU检测技术诞生了。基于该技术,今后可以像检测DNA中的A、T、G和C那样精确地检测DNA中的dU。
Ucaps-seq测序技术是国际上第一个酶法检测DNA中的dU碱基的技术,现存的dU测序技术均为化学法。酶法测序技术优于化学法测序技术。酶法测序技术的优点是:灵敏性好、特异性强和分辨率高。其他优点包括:效率高成本低,很少发生假阳性,也很少受到干扰因素的影响。例如,既有的DNA的dU化学测序技术需要先利用UNG酶切除dU成为无嘧啶的位点,而这样的处理较难与DNA自身存在的无嘧啶位点区分,不可避免地导致假阳性的发生,而Ucaps-seq测序技术则很少出现假阳性。再例如,Ucaps-seq测序技术可以排除其它碱基衍生物如5-羟甲基尿嘧啶的干扰。
研究人员利用该技术还做了进一步的验证和探索工作。他们首先在合成的DNA探针模型上验证了Ucaps-seq测序技术的原理,然后在诱变后的癌症细胞和B细胞中验证了Ucaps-seq测序技术的单碱基分辨率效能,最后还应用该技术对基因编辑脱靶进行了评估,发现Ucaps-seq测序技术对基因编辑脱靶具有强大的识别能力。
论文的通讯作者为中国科学院院士陈义汉教授(同济大学附属东方医院、同济大学医学院和同济大学心律失常教育部重点实验室)、马红辉研究员(同济大学附属东方医院和同济大学心律失常教育部重点实验室)和胡晋川研究员(复旦大学生物医学研究院和上海市第五人民医院)。论文的第一作者为江柳丹(同济大学博士研究生,导师为陈义汉院士和马红辉研究员)、尹家勇(复旦大学硕士研究生)和钱茂祥研究员(复旦大学生物医学研究院和复旦大学附属儿科医院)。
心脏病学家。1996年毕业于上海交通大学医学院,获得内科学博士学位。同济大学教授、主任医师、博士生导师。中国科学院院士,中国医学科学院学部委员,教育部科技委员会委员。全国政协委员,九三学社中央委员,九三学社上海市副主委。
现任同济大学副校长、同济大学附属东方医院院长、同济大学附属东方医院心脏内科主任和心律失常教育部重点实验室主任。国家杰出青年科学基金获得者、教育部长江学者特聘教授、国家基金委基础科学中心项目负责人、国家基金委创新研究群体项目负责人、国家干细胞与重大疾病学科创新引智基地负责人和教育部创新团队项目负责人。
长期从事心血管疾病临床工作和基础研究,在心血管疾病研究领域取得了一些重要的科学发现。他是第一个人类心房颤动致病基因的发现者,他定义了心脏起搏细胞的谷氨酸能神经元样细胞属性,发现了新的心脏生物电控制系统,识别出了控制心肌细胞增殖和心肌再生的一个关键信号通路,研发出一系列靶向重大心脏疾病的新药前药。论文发表在《Science》等刊物上。他的科学发现曾经被评为国际心脏电生理学领域年度突破性进展、中国高等学校十大科技进展、国家自然科学奖二等奖、教育部自然科学奖一等奖和上海市自然科学奖一等奖等。
他是中国青年科技奖获得者、中国医师奖获得者、卫生部有突出贡献的中青年专家、上海市科技精英、上海市领军人才、上海市自然科学牡丹奖获得者、上海医学发展杰出贡献奖获得者、上海市劳动模范和全国“五一”劳动奖章获得者。

