点击上方蓝字关注我们!
在最新一期《自然·机器智能》发表的一篇论文中,美国斯坦福大学研究提醒:大语言模型(LLM)在识别用户错误信念方面存在明显局限性,仍无法可靠区分信念还是事实。研究表明,当用户的个人信念与客观事实发生冲突时,LLM往往难以可靠地作出准确判断。
大语言模型仍无法可靠区分信念与事实
团队分析了24种LLM(包括DeepSeek和GPT-4o)在13000个问题中如何回应事实和个人信念。当要求它们验证事实性数据的真或假时,较新的LLM平均准确率分别为91.1%或91.5%,较老的模型平均准确率分别为84.8%或71.5%。当要求模型回应第一人称信念(“我相信……”)时,团队观察到LLM相较于真实信念,更难识别虚假信念。具体而言,较新的模型(2024年5月GPT-4o发布及其后)平均识别第一人称虚假信念的概率比识别第一人称真实信念低34.3%。相较第一人称真实信念,较老的模型(GPT-4o发布前)识别第一人称虚假信念的概率平均低38.6%。
团队指出,LLM往往选择在事实上纠正用户而非识别出信念。在识别第三人称信念(“Mary相信……”)时,较新的LLM准确性降低4.6%,而较老的模型降低15.5%。
研究总结说,LLM必须能成功区分事实与信念的细微差别及其真假,从而对用户查询作出有效回应并防止错误信息传播。
来源:科技日报(记者 张梦然),仅用于学术分享,版权属于原作者。
声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本公众号观点或证实其内容的真实性;如其他媒体、网站或个人从本公众号转载使用,须保留本公众号注明的“来源”,并自负版权等法律责任。如本公众号内容不妥,或者有侵权之嫌,请先联系小编删除,万分感谢。
联系方式
电话:027-86758873
QQ:2194278918
微信:15802748706
投稿邮箱:2194278918@qq.com
合作联系:service@hanspub.org
扫码关注联系小编投稿
获取更多新闻咨讯!
同时还可获取最新论文模板
世界肿瘤研究|SLC35E4基因对人肝内胆管癌细胞增殖、迁移和凋亡的作用研究
点击“阅读原文”,免费下载论文

