大数跨境
0
0

基于PERA SIM的铝合金轮毂有限元分析

基于PERA SIM的铝合金轮毂有限元分析 数字仿真论坛
2022-12-19
1
导读:PERA SIM具有高精度计算能力,与目前主流的成熟商业软件之间的偏差极小,其相对误差均在3%以内。

安世亚太结构工程师

安小龙


摘要: 轮毂的力学性能是汽车安全性及可靠性的重要影响因素,作为汽车的重要承载部件,需要严格保证轮毂的性能满足国家标准的要求。本文以某乘用车轮毂为研究对象,应用自主有限元软件PERA SIM建立轮毂有限元模型,并依据国家标准 GB/T5334-2005《乘用车车轮性能要求和试验方法》建立仿真工况,完成轮毂的刚度、强度分析,为轮毂的进一步结构优化设计提供了依据。并将计算结果与目前主流的商业软件ANSYS、ABAQUS比对,验证了国产自主软件PERA SIM的高精度计算。


关键词: 轮毂;刚度;强度;PERA SIM;高精度


1. 引言

随着能源问题以及环境保护问题在全世界范围内的备受关注,汽车行业的轻量化成为汽车发展的重要方向。而对于新材料的使用是主要的解决方案之一,其中铝及铝合金因其密度低,刚度、强度高,并且具有良好的耐腐蚀性、冲击性以及散热导热等性能,能够有效降低汽车重量,从而降低油耗,缓解能源问题及环境保护问题。因此,铝合金材料已经成为汽车轻量化不可或缺的重要材料[1-4]

轮毂是汽车承载的重要部件,处于轮胎与车桥之间,传递着汽车与地面之间的相互作用力,起着承载、转向、制动、驱动等重要作用,因此轮毂对汽车的安全性及可靠性有着重要的影响。而轮毂主要分为三种材质:钢制、铝合金及镁合金。其中钢制轮毂主要用于重载车辆;镁合金轮毂因其价格昂贵,主要用于赛车等高级车;而铝合金轮毂因其良好的导热性、减震性能、质量轻、成形性好等优点备受市场的青睐。(铝合金轮毂的基本结构示意图如下图1所示。)

因此,也吸引了更多学者进行铝合金轮毂性能的研究[5-8]。其中潘玉田等人[9]以履带式自行火炮轮毂为研究对象,分别比较了钢质及铝合金轮毂的性能;边雷雷[10]以重载车用铝合金轮毂为研究对象,结合有限元法对轮毂进行了疲劳分析。本文将基于GB/T 5334-2005《乘用车车轮性能要求和实验方法》的要求,建立弯曲疲劳试验的仿真工况,并基于国产自主软件PERA SIM进行轮毂的静力学仿真分析,为轮毂的进一步优化设计提供指导。


图1  轮毂结构图


2. 轮毂有限元模型的建立




2.1 轮毂模型的简化






轮毂的几何结构十分复杂,轮毂上分布着包括气门孔、修饰凹槽、装饰圆角等结构[11]。过小装饰结构特征对轮毂的强度分析几乎没有影响,并且由于结构尺寸的影响,会导致不必要的计算成本增加。因此,在有限元分析之前,需要对轮毂的几何结构作适当的简化:去除气门孔以及各种修饰特征。


简化后的轮毂几何模型如下图所示:


 

图 2 轮毂几何模型




2.1 轮毂的有限元模型

2.2.1 计算流程

PERA SIM是安世亚太科技股份有限公司自主开发的通用有限元软件,包括机械仿真(PERA SIM Mechanical )、流体仿真(PERA SIM Fluid)、电磁仿真(PERA SIM LEmag )以及声学仿真(PERA SIM AcousticBEM )等模。PERA SIM提供完备的前后处理器,丰富的CAE数据接口以及强大的Python API接口。本文基于自主有限元软件PERA SIM Mechanical,对轮毂进行强度、刚度分析,具体分析流程如下图所示。


图 3 轮毂有限元分析流程


2.2.2  划分网格

PERA SIM支持四面体网格以及混合网格划分,考虑到轮毂复杂的几何结构,本文使用高阶四面体网格划分。通过全局以及局部网格控制,对轮毂模型的局部关键位置进行网格细化,划分该轮毂模型共产生33万单元,52万节点,轮毂的网格模型如下图所示:


图 4 轮毂网格模型


2.2.3  定义属性

点击“属性”,输入轮毂的材料属性,定义为各项同性的线弹性材料,其中弹性模量:7.1E10 Pa,泊松比:0.33,密度:2770 kg/m3。定义轮毂的截面属性,并将材料属性与截面属性一同赋予给轮毂结构。


图 5 属性定义界面


2.2.4  边界条件与载荷

有关乘用车车轮的性能要求和试验方法在国家标准GB/T 5334-2005《乘用车车轮性能要求和实验方法》[12]中已有明确规定。而轮毂在实际工作中的主要失效形式是弯曲疲劳失效,在静力学分析时,应当重点关注弯曲工况下的静应力。因此,本文主要参考标准中的动态疲劳弯曲试验方法:固定车轮,使车轮承受旋转的弯矩载荷;或者弯矩方向不变,使车轮旋转。具体安装、施加载荷方式如图6所示。


图 6 动态疲劳弯曲试验方法

在进行轮毂的有限元分析之前,需要计算对轮毂施加的载荷 [13]。加载轴末端的施加载荷F可以表示为:

                      

其中:

W—整车重量;

ni—载荷系数;

G—满载负荷。


而载荷系数ni的计算公式如下[14]:

其中:

ni—轮毂的制造质量系数;

n1—路况的影响系数;

n2—汽车的载荷系数;

n3—其他相关影响系数。


在轮毂的实际工作中,除汽车载重外,还承受弯曲载荷M,弯曲载荷的具体计算公式如下

其中:

R—静负载时的半径;

μ—地面与轮胎之间的摩擦系数;

d—轮毂的偏置距离;

F—最大的额定载荷;

S—强化实验系数。


加载力F为:

其中:L—加载臂长度,本文取1m。


对于试验载荷的大小,本文以某乘用车为例,经计算可求出施加的载荷为F=1400N(加载臂长度为1 m)。


因此,本文根据GB/T 5334-2005《乘用车车轮性能要求和实验方法》的要求,基于国产自主软件PERA SIM模拟实验条件,建立某乘用车轮毂的静力学模型,对轮毂的单侧轮缘面施加固定约束,在总体坐标系下的(2.8533,-818.74,113.08)处,建立节点,并与五个螺栓孔内表面建立RBE3连接,在建立的节点上施加Z向集中载荷1400 N以及X向力矩1400 N*m。具体情况如下图所示。


图 7 轮毂边界条件与载荷


值得注意的是,RBE3连接是一种柔性连接,本质上是MPC形式的约束方程,其单元为内插值单元,无刚度矩阵,仅涉及到载荷的分配,因此更加能缓解局部位置的应力集中。与此相对的RBE2连接,是一种刚性连接,类似于线性刚体单元,对从节点施加强制的位移边界条件,易造成应力集中现象,因此本例中使用的是RBE3的柔性连接。


3. 有限元计算结果

基于PERA SIM对乘用车轮毂进行有限元分析,进行网格无关性验证,并将计算结果与成熟商业软件比对。根据表1可以发现,当网格达到33万左右时,继续加密网格,变形量与等效应力基本不再变化(浮动在1%以内),因此,为平衡计算成本与计算精度,本文采用329459单元数,515620节点的网格规模。

表 1网格无关性验证数据


 PERA SIM计算结果:

  

a) 变形 

b) 等效应力

图 8  PERA SIM计算结果云图

如上图所示,在外载荷的作用下,轮辐受到的影响最大,螺栓孔的边缘处承受较大的应力,与实际情况相符,最大应力为109.1 MPa,远小于铝合金的屈服强度240 MPa,因此本文中乘用车的轮毂仍有较大的强度裕度,轮毂整体的最大变形量为0.1495 mm,满足要求。因此,可以对轮毂做进一步的优化设计,减轻轮毂自重。


通过目前主流的成熟商业软件ANSYS、ABAQUS,基于相同的几何模型、边界条件及外载荷、求解设置等参数进行计算,并分别进行网格无关性验证后的计算结果如下图所示,与自主软件PERA SIM的计算结果比较如表2所示。


ANSYS计算结果:

a) 变形

b) 等效应力

图 9 ANSYS计算结果云图

ABAQUS计算结果:

    

a) 变形 

b) 等效应力

图 10 ABAQUS计算结果云图


表 2 计算结果比对

对比不同软件的计算结果,可以看到自主软件PERA SIM的计算结果(变形与等效应力)与目前主流的成熟商业软件ANSYS、ABAQUS之间的偏差极小,其相对误差均在3%以内验证了国产自主软件PERA SIM的高精度计算。 


5. 结论

本文基于自主有限元软件PERA SIM建立某乘用车轮毂的有限元模型,并依据GB/T 5334-2005《乘用车车轮性能要求和实验方法》的要求模拟实验工况,基于PERA SIM的后处理,可以清晰的显示出轮毂的应力及变形分布情况,对轮毂的进一步优化设计具有重要指导意义。此外,又分别通过ANSYS、ABAQUS软件基于相同的参数设置对轮毂模型进行分析,并对比三者的计算结果偏差,结果显示在保证边界条件与载荷相同的前提下,三者的变形结果与等效应力结果基本一致,偏差均在3%以内,验证了自主软件PERA SIM的高精度计算。




参考文献

[1] 张国智. 轿车铝合金轮毂台架试验的有限元数值模拟[D]. 燕山大学, 2005.

[2] 臧孟炎,秦滔. 铝合金车轮13°冲击试验仿真分析[J]. 机械工程学报, 2010(02): 83-87.

[3] 闫胜昝. 铝合金车轮结构设计有限元分析与实验研究[D]. 浙江大学, 2008.

[4] 钟翠霞. 铝合金车轮设计及结构分析[D]. 浙江大学, 2006.

[5] 陆洋.汽车轮毂有限元分析及优化[D].广西科技大学,2015.

[6] 赵宇.基于 ANSYS Workbench 的汽车铝合金车轮强度分析[D]. 河北:河北工业大学. 2010.

[7] 张宁.铝合金轮毂受力状态的有限元分析与优化设计[D].重庆: 重庆大学. 2010.

[8] 崔璨.小型菱形车铝合金轮毂强度与疲劳寿命研究[D].湖南:湖南大学.2012.

[9] 潘玉田,马新谋,马昀.履带式自行火炮负重轮轮毂轻量化技术研究[J].火炮发射与控制学报,2018( 19) : 41-44, 49.

[10] 边雷雷.重载车低压铸造铝合金轮毂疲劳寿命分析研究[D].沈阳: 沈阳理工大学. 2014.

[11]童寒川,夏伟.铝合金轮毂弯曲性能有限元分析[J].汽车实用技术, 2019(23): 132-134. DOI: 10.16638 /j. cnki.1671-7988.2019.23.046.

[12] GB/T5334-2005.乘用车车轮性能要求和实验方法[S].

[13]郭威成. 铝合金轮毂的有限元分析[D].燕山大学,2013.

[14]Pennington, Tom. Wheel Rim Manufacturer Switches to Nanoceramic Metal Pretreatment [J].Products Finishing, 2010, 75(2):28-35.



安世亚太视频号

PERA SIM Mechanical空调压缩机谐响应分析


以上视频源自视频号

扫二维码关注,精彩不错过

延伸阅读


 1.  PERASIM荣获CAE挑战赛结构、流体仿真双冠军
 2.  PERA SIM及航空航天行业应用分享
 3.  PERA SIM紧凑拉伸试件弹塑性分析实例
 4.  PERA SIM Mechanical多场景精彩案例分享
 5.  燃烧室PERA SIM PreCFD高级CFD网格划分
 6.  基于PERA SIM的列车转向架模态分析
 7.  PERA SIM PreCFD新能源汽车控制器网格划分
 8.  快速边界元声学分析软件PERA SIM AcousticBEM案例分享

【声明】内容源于网络
0
0
数字仿真论坛
发布中国CAE工程分析技术年会动态,通报中国CAE工程分析技术信息,进行CAE相关技术、咨询分享
内容 362
粉丝 0
数字仿真论坛 发布中国CAE工程分析技术年会动态,通报中国CAE工程分析技术信息,进行CAE相关技术、咨询分享
总阅读0
粉丝0
内容362