▎药明康德内容团队编辑
Alex Abramson,29岁
佐治亚理工大学
工作简介

▲可自动翻身的智能胶囊(图片来源:Abramson博士个人官网)
Samagya Banskota,32岁
Broad研究所
工作简介
今年1月,刘如谦教授团队在《细胞》杂志上发表重要论文,介绍了一种有望突破基因疗法递送瓶颈的全新工具,Samagya Banskota博士正是本研究的共同第一作者。该团队使用的技术是病毒样颗粒(virus-like particles),即由病毒蛋白组装而成的小颗粒。它可以像病毒一样进入细胞,运送分子货物。在颗粒表面使用不同的分子,就可以递送到不同的目的地。由于病毒样颗粒内没有病毒的遗传物质,不会引起感染,也不会在细胞中插入外来的DNA,因此可能有着更好的安全性。但这些颗粒在体内递送蛋白质的效率十分有限,也限制了它们在临床治疗上的应用。

▲本研究带来的工程化病毒样颗粒可以递送到多种不同的器官(图片来源:参考资料[5])
针对这些挑战,科学家们开发出了一种全新的工程化病毒样颗粒(简称eVLP),是首个能够向成年动物多种组织提供治疗水平的基因编辑蛋白的病毒样颗粒。在优化后,新型eVLP携带的蛋白质货物比过去增多了16倍,使编辑效果提高了8~26倍,在一些细胞实验中达到了95%的编辑效率!此外,这一技术还能在大脑、肝脏和视网膜等多个器官中实现了对多种目标基因的编辑。
展望未来,这种eVLP不仅可以用于基因编辑,还可以用于递送其他治疗性蛋白质。“eVLP结合了病毒和非病毒递送系统的优势,”Banskota博士介绍,“它们也是可编程的,并且相对容易生产,这些特点使它们成为蛋白质递送的潜力工具。我们期待这种eVLP可以被用来改善治疗性大分子的递送,造福患者。”如今,这名科学家已共同创立了Nvelop Therapeutics,开发具有变革性的基因疗法。
Xin Jin,34岁
Scripps研究所
工作简介
她的实验室官网中写道:美国大约每五名成人里,就有一人会在生命中经历某种形式的严重精神疾病。尽管遗传学研究已经找到了很多与精神疾病有关的基因和位点,但将这些发现与其细胞机制以及组织背景联系起来,还是一件充满挑战的难事。她的团队正在开发一种体内的遗传学筛选工具,能在大脑发育和成熟的过程中,系统性地分析不同基因在不同细胞类型中的功能。

▲Xin Jin教授的研究方向(图片来源:Xin Jin教授实验室官网)
《麻省理工科技评论》的官方介绍中,Xin Jin提到“过去,遗传学研究大多只是在特定的时间,特定或者少数几种细胞类型里分析一个基因。”如今她的工作能让科学家们同时在不同的细胞和器官中分析几十或者几百条不同的基因。长远来看,这一技术能改变哺乳动物神经发育的研究全景,有望让科学家们研究自闭症和发育迟缓等疾病背后的原因。
Mijin Kim,32岁
纪念斯隆-凯特琳癌症研究中心
工作简介

▲碳纳米管技术示意图(图片来源:参考资料[8])
“这一方法能被快速应用到许多疾病的检测中,”Mijin Kim博士说道,“只要给检测器足够的数据,这一方法就能用来训练开发算法,识别几乎任何一种疾病。”
Benjamin Oakes,33岁
Scribe Therapeutics
工作简介
当下许多专注于CRISPR技术的基因编辑公司多使用CRISPR-Cas9和CRISPR-Cas12a系统,而Scribe公司专注于一种名为CasX的新型核酸酶。CasX源于自然界中一类“不可培养的细菌”(uncultivated microbes),与Cas9或Cas12a相比,CasX要小得多(不到1000个氨基酸)。经过Jennifer Doudna教授实验室的改造,最终成功应用于基因编辑。由于其体积较小,在递送上更具潜在优势。

图片来源:Scribe公司官网
根据其官网介绍,Scribe公司每个月都能开发数百个可用于CRISPR基因编辑技术的新分子,用于优化基因组编辑工具。“我们改造的基因编辑器更具活性,也能产生更高产的编辑。它们经过增强后,能更特异地靶向基因组的任意部分,自身也更为袖珍。”Oakes博士在《麻省理工科技评论》的访谈里说道。
Scott Xiao,24岁
Luminopia
工作简介
有接近3%的儿童会出现弱视,这一疾病背后的原因是因为大脑和眼睛之间无法协调工作,大脑主要依靠一只眼睛,从而造成另一只眼睛视力下降。通常它的治疗方法是用眼罩遮住视力较强的眼睛,促使对视力较弱眼睛的使用。不过这种方法并不能训练两只眼睛协调使用。而且戴眼罩可能带来负面的社会和心理影响,一些儿童不愿意使用。
Luminopia公司的Luminopia One系统使用虚拟现实(VR)系统,通过观看特定算法修改过的电视节目或者电影来改善视力。这一系统可调节患者在VR系统中看到的图像,促进对视力较弱眼睛的使用,并且鼓励患者的大脑将两只眼睛输出的信号进行结合。这一系统的效果得到多个临床试验的积极数据支持。在一项关键性3期临床试验中,105名4-7岁患儿随机接受Luminopia One系统和眼镜治疗,或只接受眼镜治疗。两组之间的视力敏锐度改善在接受治疗4周后就出现统计显著区别。在接受治疗12周后,Luminopia One的弱视眼视力平均改善1.8行(使用logMAR视力表),对照组改善0.8行(p=0.001)。
去年10月,美国FDA批准Luminopia One系统上市,作为处方疗法,改善弱视儿童的视力。新闻稿指出,这也是FDA批准用于治疗弱视儿童的首款数字疗法。
参考资料:
[1] Biotech: We're rewriting what we thought was possible in biotech. Retrieved June 28, 2022, from https://www.technologyreview.com/innovators-under-35/biotech-2022/
[2] Rewriting what we thought was possible in biotech, Retrieved June 28, 2022, from https://www.technologyreview.com/2022/06/28/1054260/2022-innovators-biotechnology/
[3] Alex Abramson, Retrieved June 28, 2022, from https://www.forbes.com/profile/alex-abramson/?sh=2ecde7c0608d
[4] Alex Abramson个人网站, Retrieved June 28, 2022, from https://www.agabramson.com/home
[6] Xin Jin, Retrieved June 28, 2022, from https://www.scripps.edu/faculty/jin/
[7] A Sensor Sniffs for Cancer, Using Artificial Intelligence, Retrieved June 28, 2022, from https://www.mskcc.org/news/sensor-sniffs-cancer-using-artificial-intelligence
[8] Kim, M., Chen, C., Wang, P. et al. Detection of ovarian cancer via the spectral fingerprinting of quantum-defect-modified carbon nanotubes in serum by machine learning. Nat. Biomed. Eng 6, 267–275 (2022). https://doi.org/10.1038/s41551-022-00860-y
[9] Scribe Therapeutics官方网站, Retrieved June 28, 2022, from https://www.scribetx.com/
版权说明:本文来自药明康德内容团队,欢迎个人转发至朋友圈,谢绝媒体或机构未经授权以任何形式转载至其他平台。转载授权请在「药明康德」微信公众号回复“转载”,获取转载须知。

分享,点赞,在看,聚焦全球生物医药健康创新

