大数跨境
0
0

北理工赵之平团队 Science发表:高柔性超疏水MOF膜

北理工赵之平团队 Science发表:高柔性超疏水MOF膜 高分子科技
2022-10-23
0
导读:在聚合物基底中包埋晶种进而通过表面晶体诱导生长法精确构筑MOF纳米片膜新构想…
点击上方蓝字 一键订阅

2022年10月21日,北京理工大学化学与化工学院赵之平教授团队在Science上发表文章“Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol-water separation”,提出了一种在聚合物基底中包埋晶种进而通过表面晶体诱导生长法精确构筑MOF纳米片膜的新构想,在聚合物基底表面实现了高柔性超疏水MOF膜的层次构建,解析了纳米片的晶体结构及其内部的传质通道,揭示了聚合物与纳米片层在分离过程中的协同机制,突破了柔性MOF膜制备瓶颈,为规模化制备和应用提供了理论依据和技术支撑


该工作的第一作者为北京理工大学化学与化工学院博士研究生徐李昊李申辉,通信作者为赵之平冯英楠,北京理工大学为该项工作的唯一完成单位


01

背景介绍


分离过程是化学工业中能耗、投资、成本最集中的环节,占投资和成本的40-70%,占世界能耗的10%以上,也是能源、环境、食品和生物医药等领域不可或缺的环节。渗透汽化膜分离技术可节能30-60%,高效节能特点显著,不仅是一种支撑可持续发展的关键技术,也在我国实现“碳达峰、碳中和”目标过程中发挥着举足轻重的作用。突破分离膜在渗透性和选择性之间存在的“trade-off”博弈效应,研发高性能分离膜是膜科学技术领域科学家不懈的追求。


近年来,基底负载的异质外延金属有机骨架(MOF)膜在分离方面展现出巨大的应用潜力。现有方法多在刚性无机基底上制备MOF膜,为突破膜放大制备难度大、膜组件加工制作灵活性差的技术瓶颈,赵之平教授团队从解决制约技术瓶颈的科学问题入手,制备出了一种高柔性MOF纳米片(MOF-NS)膜。


02

MOF纳米片膜制备及结构解析


为解决MOF层与聚合物基底之间的表界面结合问题,研究团队将ZIF-8晶种共混到聚合物铸膜液中,并采用非溶剂致相分离(NIPS)法,巧妙地制备了聚合物基底内嵌入“芽状”晶种的聚偏氟乙烯膜(SEEDS/PVDF)。嵌入聚合物基底的“芽状”晶种不仅成为MOF纳米片与聚合物连接的“锚点”,其独特的花瓣状片结构也为纳米片生长奠定基础。以此为基底通过诱导MOF限域生长,调控制备出了完整蜂窝状MOF纳米片膜(MOF-NS/PVDF)。通过X射线衍射(XRD)和蒙特卡洛分子模拟方法解析了MOF纳米片的晶体结构及其内部的传质通道,其拓扑结构以厚度为0.525 nm的[Zn2(MeIm)4]n为网格状平面,包含0.435 nm的亚纳米级层间通道,揭示了ZIF-8晶种在NIPS法成膜过程中发生了晶格畸变


图1. MOF-NS/PVDF膜的结构及制备方法:(A)膜的表面形貌(从SEEDS/PVDF基底分别经过1 h、3 h和6 h生长后制备得到MOF-NS/PVDF膜);(B)SEEDS/PVDF膜和MOF-NS/PVDF膜的制备示意图;(C)PVDF膜、SEEDS/PVDF膜、MOF-NS/PVDF膜和模拟的[Zn2(MeIm)4]n膜的XRD谱图。


图2. MOF-NS层间分子传递通道: (A)Zn2(MeIm)4的层间通道和孔径大小;(B)MOF-NSHR-TEM图像;(C)MOF-NS的层状结构和层间通道。


03

MOF纳米片柔性展现


在电子显微镜下,通过调节观测区域的电子束轰击密度,首次捕捉到MOF纳米片的可逆柔性形变(即纳米片的扭转、翻转和摇摆),纳米片厚度约13 nm。MOF纳米片在透射电镜下展现出不同于ZIF-8的良好晶格结构,蜂窝状MOF纳米片的片层结构和其内部连续通道,使其在渗透汽化过程中展现了超高渗透性


图3. MOF-NS/PVDF膜的高柔性结构:(A)MOF-NS/PVDF膜柔性可逆动态形变过程的SEM图像(包括翻转、扭转和摇摆);(B)MOF-NS/PVDF膜柔性可逆动态形变示意图;(C)MOF-NS/PVDF膜的弯曲测试;(D)MOF-NS/PVDF膜在弯曲后表面和断面的SEM图像。


04

MOF纳米片膜缺陷修复


MOF纳米片膜(MOF-NS/PVDF)经聚二甲基硅氧烷(PDMS)溶液滴涂改性,形成具有蜂窝状结构的PDMS涂层,不仅修复了MOF纳米片间的分子尺度缺陷,同时实现了膜表面特性从超亲水到超疏水(水接触角158.3°)的转变,构建了兼具超疏水表面特性和膜内MOF-NS快速分子扩散通道的双功能膜(PDMS/MOF-NS/PVDF)。


图4. PDMS改性MOF-NS/PVDF膜的制备工艺、结构及表面特性:(A)滴涂改性过程示意图;(B)滴涂改性前后膜表面微观形貌变化。


05

MOF纳米片膜分离机理及性能


PDMS/MOF-NS/PVDF复合膜渗透汽化分离测试及分子模拟揭示了PDMS与MOF纳米片层在乙醇-水分离过程中的协同作用机制:首先,亲有机物的PDMS层阻碍水分子溶解渗透而使醇分子优先溶解透过;MOF纳米片中片层结构的二甲基咪唑选择性吸附透过PDMS的醇分子,形成二次选择提高分离因子,同时其内部的连续孔道结构成为分子传递的快速通道,减小了分子传递阻力。此外,蜂窝状结构的膜表面增加了与料液的有效接触面积,促进渗透通量提升。在分离过程中,亚纳米级通道对较大分子丁醇展现了分子筛分截留作用。在聚合物基底构建的PDMS-MOF纳米片复合层,不仅强化了膜内分子传质,也有效促进近膜表面流体湍动、降低了渗透汽化过程的浓差和温差极化现象,进而显著提高了复合膜的分离性能,渗透通量和分离因子分别是传统方法制备的PDMS/PVDF膜的13.6倍和1.2倍。


图5. 膜PV性能以及膜表面形态对进料液流动行为的影响:(A)40 oC下分离5 wt%乙醇水溶液膜的PV性能;(B)PV分离性能对比;(C)膜长时稳定性;(D-E)膜表面的流动行为。

该项研究得到了国家自然科学基金重点项目,国家重点研发计划项目以及北京理工大学青年教师学术启动计划的支持。


原文链接:

https://www.science.org/doi/10.1126/science.abo5680


相关进展

苏大李战雄教授、新加坡国立大学Tan Swee Ching教授 ACS Nano:重氮自由基羧基化多功能MOF@织物的制备及应用

电子科大刘孝波-贾坤团队 AFM:MOF原位功能化聚芳醚腈构建耐高温自阻燃锂电池隔膜

华中大龚江课题组 CEJ:废旧聚酯转换成MOF进行可控碳化并用于太阳能界面水蒸发和产电协同

哈工大邵路教授团队《PNAS》:面向可持续碳捕集的超高MOF含量混合基质膜的生物共生系统启发合成

免责声明:部分资料来源于网络,转载的目的在于传递更多信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:info@polymer.cn

诚邀投稿

欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。

欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。

申请入群,请先加审核微信号PolymerChina(或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。

这里“阅读原文”,查看更多


【声明】内容源于网络
0
0
高分子科技
高分子科技®协同全球高分子产业门户及创新平台 “ 中国聚合物网 www.polymer.cn ” ,实时报道高分子科学前沿动态,关注和分享新材料、新工艺、新技术、新设备等一线科技创新设计、解决方案,促进产学研及市场一体化合作的共同发展。
内容 16581
粉丝 0
高分子科技 高分子科技®协同全球高分子产业门户及创新平台 “ 中国聚合物网 www.polymer.cn ” ,实时报道高分子科学前沿动态,关注和分享新材料、新工艺、新技术、新设备等一线科技创新设计、解决方案,促进产学研及市场一体化合作的共同发展。
总阅读294
粉丝0
内容16.6k