人脑神经网络架构具有能量效率高、数据传输频率高、信息存储量大、处理速度快等特点,可以并行运行计算和记忆功能,在提升工作效率的同时大大降低运行能耗。因此,类脑神经计算和人工突触器件的概念被认为是下一代学习、认知、记忆和存储数据的新方向。为了人工模拟生物突触的学习行为和构建神经网络,基于有机功能材料开发双端忆阻器件成为当前的一大研究热点。


图 1. 二维微/纳米HOFs与的HOFs@Au合成和观测过程,以及双端有机忆阻器的制备示意图。
【本文要点】
要点一:纳米条带状HOFs@Au复合材料的可控合成
研究发现纳米HOFs的生长过程可以通过肉眼大致监测到,并通过动态光散射(DLS)和扫描电镜(SEM)测量进一步验证。在UV照射下,HOFs的前驱体TBAPy在不同溶剂的生长中发射出不同波长的光(图1)。在DMF或DMSO与乙醇的混合溶剂中,尤其保持这良好的胶体分散现象,而在其他溶剂中,过度的生长容易导致聚集沉淀。进一步通过表征手段,证明了不同溶剂中的生长差异,并通过还原反应将Au NPs嵌入到纳米HOFs骨架中(图2)。研究同样提供了研磨法制备HOFs的设计思路。这一可视化的合成过程为为开发2D-HOF纳米带及其异质结复合材料提供了新的途径。

图 2. 二维微/纳米HOFs与的HOFs@Au合成和观测过
要点二:扫描电压模式下稳定的梯度阻变行为
在扫描电压模式下,基于HOFs@Au的忆阻器可以很容易地实现渐进式电导调谐,这可以用来模仿生物神经元中的突触行为。通过重复电压刺激,建立了一个遗忘-再学习-遗忘的记忆过程。具体来说,通在初始阶段经历快速的损失,随后经历缓慢的衰减,遵循艾宾浩斯遗忘曲线。基于HOFs@Au的忆阻器与人类记忆遗忘的趋势吻合较好,可以模仿人试图随着时间的推移的遗忘过程。逆电压刺激一段时间后(10次,约160 s),器件电流可以再次恢复到较高水平,表现为“再学习”过程(图3)。然而,并不是所有被遗忘的内容都能被重新学习,尤其是在正电压刺激的区域,这表明长时间记忆能力受损。此外,通过控制HOFs@Au忆阻器器件中的限制电流(ICC),同样也可以实现电阻状态的精准调控,这为突触强度的电导状态提供了额外的策略。

图 3. 电压扫描模式下梯度电导和时间依赖曲线
要点三:脉冲电压模式下模拟低功耗的人工突触功能
不同的脉冲序列会产生不同的突触功能和多级电阻状态,当脉冲时间间隔Δt小于5000 ns时,器件表现出电流渐变的特性,与电压扫描模式下的电学行为相似 (图3)。结果表明,基于HOFs@Au可以通过不同的脉冲振幅、宽度、Δt和TR&F参数对电导进行调节,并通过不同的脉冲序列改变电流权重的变化,最终实现PPF, PTP,EPSC等突触功能模拟。经过计算,单个忆阻器在3.0 V偏置电压下的响应时间为250 ns,即单个突触器件的能量消耗大约为1.12 nJ/spike和35.8 fJ μm−2。此外,随着器件面积的减小,HOFs@Au忆阻器的能量消耗有望大大降低,具备开发超低功耗人工突触和神经计算架构的潜力。

图 4. 电压脉冲模式下电流权重变化测试以及突触行为模拟
论文致谢:
本工作的完成受到杨新波教授(苏州大学)、俞飞教授(南京师范大学)、周晔研究员(深圳大学)、马春兰教授(苏州科技大学)、王冠博士(苏州大学)的指导和帮助,在此一并表示感谢。同时,感谢国家自然科学基金、江苏省自然科学基金,江苏省高等学校自然科学基金、江苏省六大人才高峰项目、江苏省“十四五”重点学科、苏州市低维光电材料与器件重点实验室、香港城市大学及香港城市大学香港高等研究院(中国香港)对本研究工作的经费支持。
文章链接
Visual Growth of Nano-HOFs for Low-Power Memristive Spiking Neuromorphic System
https://doi.org/10.1016/j.nanoen.2023.108274
通讯作者简介
相关进展
苏州科技大学李阳副教授等 AFM:基于MXene的新兴忆阻器在信息存储、神经形态计算和逻辑运算领域的应用进展
南京工大林宗琼研究员与新加坡南洋理工大学张其春教授在富氮-类石墨烯 多孔共轭聚合物与锂离子存储的方面取得研究成果
华东理工大学陈彧教授团队 Angew:构建薁基二维共价有机框架忆阻器
上科大刘巍教授课题组 Nano Lett.: 基于稳定金属丝开关的高性能柔性聚合物忆阻器
高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn
诚邀投稿
欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。
欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。
申请入群,请先加审核微信号PolymerChina(或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。
点
这里“阅读原文”,查看更多


