大数跨境
0
0

东华大学武培怡/孙胜童团队 JACS:高熵罚策略设计冲击硬化超分子聚合物

东华大学武培怡/孙胜童团队 JACS:高熵罚策略设计冲击硬化超分子聚合物 高分子科技
2024-03-08
2
导读:利用高熵罚物理相互作用设计制备具有更高冲击硬化响应的超分子聚合物材料…
点击上方蓝字 一键订阅

冲击材料广泛应用于人体及设备防护等领域。相较于高强高韧抗冲击材料,冲击硬化材料可在高应变速率下急剧硬化,遇软则柔,遇强则刚”,更为匹配可穿戴及柔性防护的使用需求。然而,目前的冲击硬化材料仍主要局限于剪切增稠液(如淀粉糊)和剪切硬化胶(如聚硼硅氧烷),其发展已愈80年。受限于材料类型和冲击硬化机理的理解,已报道材料的冲击硬化响应仍稍显不足,在0.1100 Hz剪切频率范围内,储能模量增幅普遍小于1000倍。

东华大学武培怡-孙胜童研究团队近年来致力于通过黏弹网络分子设计和相结构调控策略开发多种力学可调控的智能软材料:基于多尺度网络设计合成应变硬化自修复离子皮肤(Nat. Commun. 2021, 12, 4082Nat. Commun. 2022, 13, 4411);基于熵驱动可逆物理吸附相互作用制备了强烈热致硬化水凝胶(Angew. Chem. Int. Ed. 2022, 61, e202204960);利用相分离含氟共聚物的动态粘滞组装开发了高阻尼离子皮肤(Adv. Mater. 2023, 35, 2209581);通过应变速率诱导相分离策略开发了剥离硬化自粘附离子液体凝胶(Adv. Mater. 2023, 35, 2310576);利用多级氢键缔合及动态相分离开发了在极宽频率范围内处于临界凝胶点状态的自顺服离子皮肤(Nat. Commun. 2024, 15, 885)。
 


近期,该团队提出,可利用高熵罚物理相互作用设计制备具有更高冲击硬化响应的超分子聚合物材料作者指出,基于瞬态物理交联的超分子聚合物网络对应变频率响应极为敏感,特别适于设计冲击硬化材料。其应变速率依赖性可通过经典热力学理论进行经验性解释:物理相互作用的形成往往伴随熵罚(即构象熵的损失,ΔS < 0)。基于时温等效原理,调节瞬态物理交联动力学的关键在于调控熵罚,即对温度(或应变速率)的斜率(ΔG = ΔH - TΔS)。因此,在超分子聚合物体系中引入高熵罚物理相互作用,可带来更大的应变速率依赖性,产生更显著的冲击硬化响应行为。
 

1. 冲击硬化超分子聚合物的工作原理及分子设计

与无方向性(如离子键)或弱方向性(如单齿氢键)的物理相互作用相比,盐桥氢键方向性极高,具有较大的熵罚。基于此,该团队设计了聚硫辛酸和精氨酸复合体系以构筑高熵罚胍基-羧酸盐桥氢键。由于精氨酸羧基的pKa~1.8)远小于聚硫辛酸(~4.7,精氨酸倾向于以分子的形式分散在聚硫辛酸基体相中这一微相分离结构大大强化了界面盐桥氢键对材料动力学的控制能力。当受到冲击时,优化比例的超分子聚合物材料柔软耗散态G′~ 21 kPa0.1 Hz)迅速切换至硬化玻璃态G′~ 45.3 MPa100 Hz储能模量提升了约2100,超过了绝大多数冲击硬化材料。
 

2. 冲击硬化超分子聚合物的性能优化

作者通过SAXS、时温叠加流变、松弛时间谱、TEM、低场核磁谱以及二维相关红外光谱等手段详细表征了这一体系的微相分离结构和冲击硬化响应。其中,精氨酸团簇尺寸仅1.8 nm,体系交联动力学受高熵罚盐桥氢键优势控制,可用单元件Maxwell粘弹模型做近似描述。作为对比,将精氨酸替换为只能形成低熵罚单齿氢键的赖氨酸或组氨酸,所得材料冲击硬化能力大幅下降。
 

3. 冲击硬化响应机理表征

宏观上,超分子聚合物表现为典型的非牛顿流体特性,静置状态下缓慢冷流,而冲击状态下既硬又弹,充分体现了遇软则柔,遇强则刚的性能特点。进一步,作者通过不同速率下的拉伸、压缩及高速霍普金森压杆测试,量化了材料与应变速率相关的力学性能和能量吸收能力。
 

4. 超分子聚合物与应变速率相关力学性能

最后,作者利用多场景展示了该冲击硬化超分子聚合物的冲击防护性能。落球冲击测试表明,其抗冲击强度优于常规弹性体和聚硼硅氧烷材料。该聚合物材料还具有极高的阻尼能力,可大幅缓解冲击引发的次生震荡伤害。此外,高温下的低粘流动特性及室温下的高粘附特性使得这一材料可与其他增强材料(如Kevlar织物)进行复合,所得织物复合材料兼具优异的抗冲击和抗穿刺性能。
 

5.冲击硬化超分子聚合物及其复合织物的抗冲击性能

视频1 冲击防护演示

以上研究成果近期以“Entropy-Driven Design of Highly Impact-Stiffening Supramolecular Polymer Networks with Salt-Bridge Hydrogen Bonds”为题,发表在《Journal of the American Chemical Society》上(DOI: 10.1021/jacs.3c13392)。东华大学化学与化工学院博士研究生乔海燕为文章第一作者,孙胜童研究员和武培怡教授为论文共同通讯作者。

该研究工作得到了国家自然科学基金重大、国际(地区)合作与交流、优青、面上项目等的资助与支持。德国于利希中子散射中心(JCNS吴宝虎博士也参与了该研究。


论文链接:

https://doi.org/10.1021/jacs.3c13392


相关进展

东华大学武培怡/雷周玥团队《Adv. Mater.》:相及相界面调控的离子压电弹性体实现离电系统的高效能量转换

东华大学武培怡/孙胜童团队《Adv. Mater.》:可剥离硬化的自粘附凝胶

东华大学武培怡教授团队 AFM:液滴塑造的分层结构化仿生纤维

东华大学武培怡/侯磊团队《Adv. Mater.》:多级相结构调控实现高强韧和自适应水陆两用聚合物材料

东华大学武培怡/焦玉聪团队 EES: Zr⁴⁺交联凝胶电解质实现无枝晶锌金属负极

东华大学武培怡/焦玉聪团队 Angew: 磷酰胆碱两性离子保护层抑制锌负极副反应

东华大学武培怡/雷周玥团队《Adv. Sci.》:具有力学适应性和环境稳定性的疏水离子凝胶用于废热和太阳能的协同收集

东华大学武培怡/孙胜童团队《Nat. Commun.》:无惧缺陷的高强韧智能水凝胶纤维

东华大学武培怡/侯磊团队《Adv. Mater.》:锂键和氢键协同作用实现无溶剂光子晶体离子弹性体的力学强韧化和传感可视化

东华大学武培怡/孙胜童团队《Adv. Mater.》:首例美学离子皮肤 - 实现应变不敏感触觉感知和纹理识别

东华大学武培怡/焦玉聪团队《ACS Nano》:聚合物电解质内锂键调控实现高性能锂金属电池

东华大学武培怡/孙胜童团队《Adv. Mater.》:模拟人体脂肪组织构筑高阻尼自修复离子皮肤

东华大学武培怡教授课题组 Matter:水凝胶离子器件在信号处理和信息存储记忆方面的新进展

东华大学武培怡/焦玉聪团队 Angew:“质子水库” 凝胶电解质用于宽温域高性能Zn/PANI电池

东华大学武培怡/孙胜童团队《Nat. Commun.》:自修复纳米纤维网增韧离子皮肤 - 耐疲劳性能媲美真实皮肤

东华大学武培怡/孙胜童团队 Angew:熵驱动水凝胶热致硬化13000倍

东华大学武培怡/吴慧青团队《Nano Lett.》: 利用异氰酸酯一步构筑仿生Murray多孔膜

武培怡教授团队《Adv. Sci.》: 受揉面启发 - 定制多功能仿生皮肤

东华大学武培怡教授课题组《Adv. Funct. Mater.》:具有高电导率的抗疲劳离子热电池

东华大学武培怡/侯磊团队《Adv. Mater.》:基于氢键构筑兼具高强高模和水塑任意成形的“绿色”塑料
东华大学武培怡/焦玉聪团队《Adv. Mater.》:水凝胶电解质氢键调控助力锌离子电池抗冻

东华大学武培怡/焦玉聪团队《Adv. Sci.》:凝胶电解质官能团助力锌金属(002)晶面成核

东华大学武培怡教授课题组《Acc. Mater. Res.》:生物启发的准固态离子导体综述

武培怡教授团队《Adv. Funct. Mater.》:具有可定制力学性能的耐水离子凝胶电极用于水下生理信号监测

东华大学武培怡/焦玉聪团队《Small》:电解液添加剂助力水系锌离子电池实现宽温度范围内无枝晶生长

东华大学武培怡/孙胜童团队《Adv. Mater.》:受泳道启发,离电液晶弹性体纤维实现离子电导率随拉伸上千倍提升

武培怡教授课题组《Adv. Sci.》:一种多尺度结构调控MXene超电电极的策略及其在3D打印微型超电器件中的应用

东华大学武培怡教授课题组:时间分辨ATR-FTIR光谱研究锂电解质在P(VDF-HFP)中的扩散机制

东华大学武培怡教授课题组Joule:高功率密度和高强韧力学性能的离子热电池

东华大学武培怡教授团队《Small》:“智能粘附”的多功能水凝胶离子皮肤生物传感器

东华大学武培怡/孙胜童团队《Sci. Adv.》:湿纺连续制备大拉伸下电阻稳定的液态金属芯鞘超细纤维

东华大学武培怡/孙胜童团队《Mater. Horiz.》:受指纹结构启发构筑超高应变感知褶皱型离子导电芯鞘纤维

武培怡教授团队《Mater. Horiz.》:力学性能自增强的高透明离子凝胶用于水下超强粘附

武培怡教授团队ACS Nano:多功能智能可穿戴纤维织物

武培怡教授团队《Adv. Mater.》:可水下通信的光学伪装离子凝胶

东华大学武培怡教授/孙胜童研究员团队AFM:可自由涂覆的自适应离子凝胶油墨

武培怡教授课题组:小口香糖大变身,在家里也能制备智能传感器

东华大学武培怡教授课题组:多层级网络增强的水玻璃实现宽谱带光管理

东华大学武培怡教授课题组《Adv. Funct. Mater.》:具有诊疗功能的仿生离子皮肤

武培怡教授团队《NML》:3D打印MOF材料,“泡一泡”实现可调色发光

东华大学武培怡教授团队:水溶液自组装制备功能性超薄二维纳米材料

东华大学武培怡教授课题组:双聚合物协同机制构筑界面稳定的MOF纳米片温敏纳滤膜

武培怡教授团队《Adv. Sci.》:同步纳流体整流技术制备手性反转的GO液晶纤维

武培怡教授课题组:低频拉曼光谱解析温敏聚电解质复合物的离子相互作用类型

东华大学武培怡教授团队:自褶皱温敏水凝胶-弹性体复合管用于血管仿生流体压力传感与控制

武培怡教授团队:多重响应的纳米纤维素液晶纤维用于手性光学和先进织物

东华大学武培怡教授团队《AFM》:基于超高无机含量矿物塑性水凝胶制备可手动编辑任意形状的仿生结构复合材料

武培怡教授课题组:一种简单、高效制备聚合物纳米管的新方法

东华大学武培怡教授《Nat.Commun.》:大形变下离子传导率稳定的弹性体设计

复旦大学武培怡教授和上海大学安泽胜教授《Nature Communications》:聚合诱导自组装领域(PISA)取得重要进展

东华大学武培怡教授课题组报道具有截然不同相变行为的水凝胶及光学效果可调节的仿生皮肤

高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn

诚邀投稿

欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。

欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。

申请入群,请先加审核微信号PolymerChina (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。

这里“阅读原文”,查看更多


【声明】内容源于网络
0
0
高分子科技
高分子科技®协同全球高分子产业门户及创新平台 “ 中国聚合物网 www.polymer.cn ” ,实时报道高分子科学前沿动态,关注和分享新材料、新工艺、新技术、新设备等一线科技创新设计、解决方案,促进产学研及市场一体化合作的共同发展。
内容 16581
粉丝 0
高分子科技 高分子科技®协同全球高分子产业门户及创新平台 “ 中国聚合物网 www.polymer.cn ” ,实时报道高分子科学前沿动态,关注和分享新材料、新工艺、新技术、新设备等一线科技创新设计、解决方案,促进产学研及市场一体化合作的共同发展。
总阅读294
粉丝0
内容16.6k