大数跨境
0
0

郭向欣课题组&宫勇吉课题组联袂固态电池最新AEM: 二维氟化石墨烯增强聚合物固体电解质

郭向欣课题组&宫勇吉课题组联袂固态电池最新AEM: 二维氟化石墨烯增强聚合物固体电解质 邃瞳科学云
2022-09-16
0
导读:​本工作设计了一种新的二维氟化石墨烯增强PVDF-HFP固体聚合物电解质,用于室温锂金属电池。

第一作者:翟朋博
通讯作者:郭向欣教授,宫勇吉教授            
通讯单位:青岛大学物理科学学院,北京航空航天大学材料科学与工程学院               
论文DOI:10.1002/aenm.202200967
              

  全文速览  

PVDF基聚合物固体电解质具有较高的机械强度、良好的热稳定性和较宽的电化学窗口,在固态锂电池中有着广阔的应用前景。然而,其本征结构缺陷及锂离子导通机制限制了其进一步发展。本项工作利用二维氟化石墨烯增强PVDF-HFP-LiTFSI(FPH-Li)聚合物电解质以实现高性能固态锂金属电池。均匀分散的氟化石墨烯能够诱导晶粒细化,在不过度增加聚合物电解质厚度的情况下有效提高了其机械性能。聚合物晶粒尺寸的显着减小增强了界面锂离子的传输并使锂离子分布均匀,从而提高了锂离子电导率并促进了均匀的锂电镀/剥离。此外,氟化石墨烯参与构建了稳定的人工界面层,有效防止了锂金属负极与溶剂化分子之间的副反应。因此,使用薄的FPH-Li聚合物电解质(厚度约为45 µm)可以在Li/Li对称电池中以较小的过电势实现稳定的Li 电镀/剥离。用其组装的Li/LiNi0.6Co0.2Mn0.2O2全电池能够在1.0 C下稳定循环,平均库仑效率高达99.5%。


  背景介绍  

固体聚合物电解质(SPEs)在固态锂电池中有着广阔的应用前景,但目前广泛应用的PEO基聚合物电解质室温离子电导率和机械性能较差,电极/电解质界面反应不受控制,限制了其整体电化学性能。虽然PEO基电解质的室温锂离子电导率可以通过添加惰性或活性填料来改善,但其机械性能和电化学稳定性仍然不足,限制了全电池的能量密度和循环寿命。与PEO相比,PVDF基电解质具有较高的机械强度、良好的热稳定性和较宽的电化学窗口。然而,PVDF-HFP基聚合物电解质在实际应用中存在两项重要问题:1. PVDF-HFP基聚合物电解质是由尺寸为几十微米的球形颗粒堆积而成,这种结构带来了大量的空隙,造成锂离子传输受阻,锂离子通量分布不均匀,此外,混入锂盐之后机械强度大幅度降低,锂枝晶生长严重;2. PVDF-HFP基聚合物电解质依靠Li-DMF(NMP)溶剂化分子进行锂离子传输,这些分子会与锂金属负极和高电压正极发生反应,导致不稳定的界面状态,造成电池的迅速失效。因此,如何在不过度增加厚度的情况下有效提高聚合物电解质的力学性能,构建稳定的电极/电解质界面层是实现高能量密度PVDF基固态锂金属电池稳定运行的关键。


  本文亮点  

本项工作将氟化石墨烯FG引入到PVDF-HFP基聚合物电解质中,带来以下几点优势:
图1. (a)普通PVDF-HFP-LiTFSI(PH-Li)聚合物电解质的合成过程及其固有缺陷对全电池循环的影响;(b)氟化石墨烯增强PVDF-HFP-LiTFSI(FPH-Li)聚合物电解质的合成工艺及其对提高全电池循环稳定性的作用机理。

1. 均匀分布的FG能够促进PVDF-HFP形核,抑制聚合物颗粒的快速长大,聚合物平均颗粒尺寸由~13 μm减小为~5 μm,有效减小的颗粒尺寸带来了独特的细晶强化效应,显著增强了聚合物电解质的机械性能;

2. 聚合物颗粒尺寸的减小不仅增加了聚合物电解质的界面接触面积,从而促进锂离子的快速传输,提高电解质室温锂离子电导率,而且均匀化锂离子通量,促进锂金属的均匀无枝晶沉积;

3. 引入的FG能够参与构筑稳定的人工界面层,抑制聚合物电解质与电极之间的副反应,提高电池的循环稳定性。



  图文解析  

图2. 氟化石墨烯及所制备的聚合物电解质物化性质表征。

氟化石墨烯(FG)是通过以氟化石墨为前驱体、NMP为插层分子的插层剥离策略获得的。图2a显示,具有层状结构的FG均匀分散在NMP中。FPH-Li和PH-Li聚合物电解质膜是通过简便的流延法制备的。扫描电子显微镜(SEM)显示,FPH-Li电解质的厚度约为45 µm(图2c),使其具有出色的柔性。图2d-e显示,相比于PH-Li电解质松散的结构,FPH -Li电解质的晶粒较小且密集堆积,形成连续的织构。高倍SEM图像显示,在FPH-Li电解质表面出现了薄的FG。均匀分布的FG不仅可以桥接聚合物颗粒以限制其快速生长,还可以构建大量的FG/PVDF-HFP接触界面,以提高FPH-Li电解质的锂离子传输速率。此外,粒度统计结果(图2f)表明,FPH-Li电解质的平均粒度约为4.97 µm,远小于PH-Li电解质(≈12.56 µm)。粒径的减小引起了细晶强化效应,极大地提高了FPH-Li电解质的机械性能。因此,FPH-Li电解质的断裂强度和总伸长率分别为5.1 MPa和87.3%,远优于3.4 MPa和33.1%的PH-Li电解质(图2g)。此外,FPH-Li电解质的傅里叶变换红外(FT-IR)光谱(图2i)中没有游离NMP的特征峰,而位于570、616、1055和1352 cm-1处的特征峰对应溶剂化的[Li(NMP)x]+分子,这表明FPH-Li电解质中的NMP以结合态而非游离态存在。溶剂化[Li(NMP)x]+在界面处的快速传输导致FPH-Li聚合物电解质具有优异的锂离子电导率。


图3. FPH-Li和PH-Li聚合物电解质电化学性能测试。

根据电化学阻抗谱(EIS),可以计算出FPH-Li电解质在30 °C的锂离子电导率为1.32 × 10-4 S cm-1(图3a),远高于PH -Li电解质(6.21 × 10-5 S cm-1)。不同温度下锂离子电导率的Arrhenius图(图3b)表明,FPH-Li和PH-Li电解质的锂离子迁移活化能(Ea)分别为0.312和0.484 eV,表明FPH-Li聚合物电解质中的锂离子传输势垒较低。对称电池测试结果显示,Li/FPH-Li/Li的极化电压随着电流密度的增加而增加,即使在1.0 mA cm-2下,电池也能保持稳定的循环而不发生短路。相比之下,当电流密度增加到0.1 mA cm-2时,Li/PH-Li/Li对称电池发生短路,这可归因于不稳定的界面和严重的锂枝晶生长。Li/FPH-Li/Li对称电池在0.1 mA cm-2@30 °C下能够稳定循环超过900小时,而Li/PH-Li/Li对称电池仅在40小时后短路。当电流密度增加到0.2 mA cm–2时,Li/FPH-Li/Li对称电池可以稳定运行超过500小时(图3g)。而Li/PH-Li/Li对称电池电压曲线波动剧烈,电压极化大,电池迅速短路。即使在0.5 mA cm-2@0.5 mAh cm-2下循环,Li/FPH-Li/Li对称电池也可以运行360小时(图3f)。


图4. 锂金属沉积/剥离过程中电极表面形貌变化。

为了揭示氟化石墨烯提高聚合物电解质对锂金属稳定性的机制,对锂金属的沉积/剥离行为进行了表征。首先使用同步辐射X射线计算机断层扫描(SX-CT)表征不同电解质膜的孔隙率和界面特性。图4a显示,由于PVDF-HFP具有大的粒径,在PH-Li电解质中可以观察到许多大的空隙,这会恶化界面接触并阻碍界面锂离子传输。通过使用有限元方法求解离子扩散和静电势场,进一步模拟聚合物电解质中锂离子浓度分布的动力学平衡。图4b显示,由于聚合物颗粒的大尺寸,PH-Li电解质膜的表面和内部形成了大的空隙。这些空隙阻碍了锂离子的传输,导致PH-Li电解质中的锂离子分布不均匀。PH-Li电解质中的高锂离子浓度梯度将导致锂电镀/剥离产生高的过电势(≈0.25 V,图4c),这会诱导快速的锂枝晶生长。图4d显示,在以0.1 mA cm-2电镀0.1 mAh cm-2的Li后,可以在电极表面观察到巨大的锂沉积物。放大的SEM图像(图4e)表明锂沉积物呈枝晶状。在锂剥离后,大量的“死锂”留在电极表面(图4f-g),进一步恶化了PH-Li电解质/锂界面的稳定性。相比之下,FG引入带来的晶粒细化效应大大降低了FPH-Li聚合物电解质的粒径,不仅增强了界面接触,还减少了大空隙的产生。水平切片SX-CT图像(图4h)显示,FPH-Li电解质的孔隙率大大降低,界面接触紧密。此外,锂离子均匀分布在FPH-Li电解质中,有效降低了锂离子浓度梯度(图4i)。同时,锂电镀/剥离的过电位降低(≈0.1 V,图4j),有助于抑制锂枝晶的形成。Li/FPH-Li/Li电池的SEM图像(图4k-l)显示,在以0.1 mA cm-2电镀0.1 mAh cm-2的Li后,电极表面均匀平整,没有锂枝晶。在锂剥离后,电极仍然呈现光滑的表面,没有观察到“死锂”(图4m-n)。


图5. Li/Li对称电池循环后电极表面形貌及SEI成分分析。

循环后的PH-Li电解质膜变成深棕色(图5b),在PH-Li电解质的表面上积累了大量的锂枝晶和副反应产物。EIS光谱显示,50次循环后界面电阻急剧下降,表明Li/PH-Li/Li电池发生了微短路(图5c)。通过X射线光电子能谱(XPS)进一步确定了100次循环后锂金属负极上SEI层的组成。图5d显示,F的含量在溅射时从9.21%迅速增加到29.76 at%,并在整个溅射过程中保持在30 at% 以上。如此高含量的LiF表明,PH-Li电解质中的PVDF-HFP发生了不可控的脱氟化氢反应,导致形成具有多孔结构的厚SEI层。溅射前C的含量高达50.84%,在整个氩离子刻蚀过程中C和O的含量都保持在较高水平。详细的C 1s和O 1s光谱(图5e-f)表明,与SEI层中的有机组分相对应的C-O和C=O键的比例增加,表明锂金属负极和溶剂化分子之间的副反应加剧。相比之下,即使经过100次循环,Li/FPH-Li/Li电池的电极表面仍然相对平坦,没有锂枝晶或死锂的积累(图5g)。FPH-Li电解质表面原位生成稳定的界面层,100次循环后仍保持均匀光滑。在FPH-Li电解质中没有观察到锂枝晶穿透(图5h)。EIS光谱显示,Li/FPH-Li/Li电池的界面电阻在不同的循环中保持不变(图5i),表明界面稳定。图5j显示了在不同XPS刻蚀深度下,Li金属电极(100次循环后从Li/FPH-Li/Li电池中提取)上特定元素的原子比。F含量在溅射120秒后达到最高值(5.88 at%)。如此低的F含量表明LiF不是源自FPH-Li电解质膜中PVDF-HFP的脱氟化氢反应,而是由氟化石墨烯和锂金属之间的原位反应生成。C含量从40.72下降到8.37 at%。C 1s光谱(图5k)表明,C-C和Li2CO3是主要成分,而初始阶段出现的C-O和C=O键对应于SEI中的有机组分。此外,在溅射60 s后,Li/PH-Li/Li电池中Li-C键的出现可归因于锂离子与石墨烯的相互作用。Li-C键的出现进一步表明氟化石墨烯参与了SEI层的构建。


图6. Li/NCM622全电池性能及正极结构表征

进一步组装了使用FPH-Li和PH-Li电解质的Li/NCM622全电池,并在30°C下进行了测量,以验证FPH-Li电解质的实用性。图6a显示,Li/FPH-Li/NCM622电池在0.1、0.2、0.5、1.0和2.0 C下分别提供173.1、159.7、144.8、118.0和106.3 mAh g-1的容量,当电流密度恢复到0.2 C时,容量仍有159.3 mAh g-1,证明Li/FPH-Li/NCM622电池具有优异的倍率性能。而Li/PH-Li/NCM622电池在0.2 C时容量波动剧烈,0.5 C时全电池失效。图6d-e显示,Li/FPH-Li/NCM622电池可在1.0 C下稳定循环300多次,容量保持率约为81.5%,平均库仑效率为99.5%,而Li/PH-Li/NCM622电池容量快速衰减,电池仅在15个循环后失效(图6e)。SEM(图6f)表明,使用FPH-Li电解质的NCM622电极表面仍然整洁光滑,没有厚的涂层。然而,对于使用PH-Li电解质的NCM622电极,电极颗粒被厚涂层包裹(图6h)。循环后NCM622电极的C 1s(图6g)XPS光谱显示,对于Li/FPH-Li/NCM622全电池中的NCM622电极,对应于正极电解质界面(CEI)的C-O、C=O和poly(CO3)峰强度相对较低,表明电解质的分解有限,FPH-Li电解质/正极界面稳定。相比之下,对于使用PH-Li电解质的NCM622电极,可以观察到与CEI对应的C-O、C=O 和poly(CO3)峰强度显着增加,表明PH分解严重,PH-Li电解质/正极界面不稳定(图6i)。



  总结与展望  

本工作设计了一种新的二维氟化石墨烯增强PVDF-HFP固体聚合物电解质,用于室温锂金属电池。添加氟化石墨烯引起的晶粒细化效应不仅可以改善机械性能,还可以增强界面锂离子传输,从而提高聚合物电解质的锂离子电导率。此外,氟化石墨烯参与构建稳定的界面层提高了锂金属负极和NCM622正极侧聚合物电解质的电化学稳定性,实现了固态Li/FPH-Li/NCM622全电池的长循环。本工作验证了二维材料在提高聚合物电解质综合性能方面的可行性,为推动基于固体聚合物电解质的SSLBs发展提供了新思路。


  作者介绍  

翟朋博,青岛大学物理科学学院副教授,2021年毕业于北京航空航天大学材料科学与工程学院,获工学博士学位(导师:宫勇吉教授)。博士阶段研究方向集中于高性能锂金属负极的设计与制备,主要开展基于表面性质调控及电极/电解质界面结构设计,构筑长循环寿命锂金属负极的研究工作。2021年9月加入青岛大学物理科学学院郭向欣教授固态锂电池团队,主要研究方向为全固态电池中电极/电解质界面结构的合理设计及高能量密度固态锂电池的研发。目前,以第一/共同第一作者身份在Nature communications,Advanced Materials, Advanced Energy Materials, Nano Letters, Journal of Energy Chemistry, Small等学术期刊上发表研究论文15篇。

宫勇吉,北京航空航天大学材料科学与工程学院教授,2011年毕业于北京大学化学与分子工程学院,获得本科学士学位;2015年在美国莱斯大学取得博士学位。2016-2017年在美国斯坦福大学从事博士后研究。2017年全职加入北京航空航天大学,现为材料科学与工程学院教授。长期从事新型二维材料研究、开发、性质调控及其在新能源领域的应用。目前,以通讯/第一作者身份在Nature Materials, Nature Nanotechnology, Nature communications, Advanced materials,Materials Today, Advanced Energy Materials, Nano letters等学术刊物上发表研究论文60余篇。被引用17,000 余次,H因子62。

郭向欣,青岛大学二级教授,博士生导师,青岛市“高性能固体电解质与固态锂电池”研究中心和山东省固态电池工程实验室主任。入选中国科学院“百人计划”、上海市“浦江人才”、山东省“泰山学者特聘教授”、青岛市“创业创新领军人才”。主要从事于高性能固态电解质研发与全固态金属电池应用研究,并参与行业最早的两项固态电解质团体标准的制定和发布。近年主持、参与国家自然科学基金重点项目、国家重点研发计划和企业技术委托项目等10余项。前期研究已在高离子电导固态电解质设计、金属/固态电解质界面微结构设计等关键领域取得了丰富的学术成果,近五年来在Nature communications, Energy & Environmental Science, ACS Energy Letters, Advanced Energy Materials, Nano Letters, Nano Energy等权威刊物发表论文60余篇,他引逾2000次。


声明


本文仅供科研分享,不做盈利使用,如有侵权,请联系后台小编删除

欢迎关注我们,订阅更多最新消息

“邃瞳科学云”直播服务

“邃瞳科学云”推出专业的自然科学直播服务啦!不仅直播团队专业,直播画面出色,而且传播渠道多,宣传效果佳。

“邃瞳科学云"平台正在收集、整理各类学术会议信息,欢迎学会、期刊、会议组织方择优在邃瞳平台上进行线上直播,希望藉此帮助广大科研人员跨越时空的限制,实现自由、畅通地交流互动。欢迎老师同学们提供会议信息(会有礼品赠送),学会、期刊、会议组织方商谈合作,均请联系翟女士:18612651915(微信同)。

投稿、荐稿、爆料:Editor@scisight.cn

扫描二维码下载

邃瞳科学云APP

点分享
点收藏
点点赞
点在看 
【声明】内容源于网络
0
0
邃瞳科学云
邃瞳科学云是一个百家争鸣的个性化学术传播平台。依托新媒体矩阵,小程序及APP等完整产品线,在开展专业性的学术活动的同时,还致力于科普教育和科学传播,更自由、重分享。 格物致知,光被遐荒。Meet Your Science!
内容 8582
粉丝 0
邃瞳科学云 邃瞳科学云是一个百家争鸣的个性化学术传播平台。依托新媒体矩阵,小程序及APP等完整产品线,在开展专业性的学术活动的同时,还致力于科普教育和科学传播,更自由、重分享。 格物致知,光被遐荒。Meet Your Science!
总阅读2.0k
粉丝0
内容8.6k