第一作者:刘琳、陈博
通讯作者:陈博、李志礼
通讯单位:广西大学
论文DOI:https://doi.org/10.1002/anie.202508330
研究了钴单原子催化剂(Co-SACs)在污染治理中的应用。通过一种可扩展的固态热解策略,成功合成了两种钴单原子催化剂(Co-N3O1和Co-N2O2),并系统地研究了其催化性能、结构特征及其作用机制。研究发现,这两种催化剂均能通过非自由基途径(如单线态氧、高阶金属氧物种和电子转移)有效活化过氧化物单硫酸盐(PMS),从而实现对污染物的高效降解。其中,Co-N2O2因其更高的氧配位数和优化的电子结构,在催化活性和稳定性上表现更为优异。通过理论计算和电化学测试,作者揭示了Co-N2O2的优异性能与其配位环境的优化密切相关。改进的配位结构增强了PMS的吸附和活化能力,并促进了非自由基氧化途径的主导作用。此外,文章还展示了该催化剂在工业公斤级生产和复杂废水处理中的应用潜力,验证了其在实际环境修复中的可行性和高效性。研究结果不仅为单原子催化剂的结构-性能关系提供了新的见解,也为工业级环境污染治理提供了可行的解决方案。
目前,传统基于自由基反应的PMS活化方法存在生成有毒副产物的固有问题。研究表明,非自由基途径的PMS活化在选择性氧化和避免有害副产品形成方面展现出更大的潜力。然而,协调单原子催化剂(SACs)的结构性能关系,提升非自由基氧化途径的效率仍是一个挑战。因此,开发协同非自由基氧化途径,提高PMS活化效率,减少有害副产物,具有重要的环境意义。研究团队通过实验和理论计算,探讨了配位环境对催化剂性能的影响,揭示了单原子催化剂在活化PMS过程中非自由基氧化途径的机制,最终成功实现了催化剂的千克级生产和应用。这一研究不仅深化了对SACs-PMS激活结构性能关系的理解,也为工业规模的环境修复提供了新的方向。
核心突破:采用廉价尿素与氢氧化钴为前驱体,经固相热解合成Co-N3O1,而后通过水热调控,将Co-N3O1结构转变为Co-N2O2,显著提升PMS活化性能。Co-N2O2在10分钟内对100 mg/L磺胺甲噁唑(SMX)降解率超过98%,循环14次仍保持高活性。
机理优势:通过1O2(单线态氧)、HVMO(高价金属氧物种)与ETP(电子转移)等非自由基路径协同作用,避免传统自由基路径的副产物风险,具备更强的抗干扰性与选择性。
工业级潜力:成功实现公斤级合成,原料成本仅8.91美元/公斤,总成本约34.68美元/公斤,处理1吨SMX废水仅需1.01美元。垃圾渗滤液处理中TOC去除量达2548 mg/L,稀释后去除率仍达66.84%,动态膜实验10小时稳定运行。
要点1. Co-SACs结构与缺陷调控
Figure 1. Synthesis and characterization of the catalysts. a) Synthesis of Co-N3O1, Co-N2O2, and kg-Co-N3O1. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM) images and corresponding energy dispersive spectroscopy (EDS) elemental mappings of b) Co-N3O1 and c) Co-N2O2. d) X-ray diffraction (XRD) patterns of UCN, HUCN, Co-N3O1, and Co-N2O2. e) 13C nuclear magnetic resonance (13C-NMR) spectra, f) Raman spectra, and g) electron paramagnetic resonance (EPR) spectra of Co-N3O1 and Co-N2O2. h) X-ray photoelectron spectroscopy (XPS) elemental composition of UCN, HUCN, Co-N3O1, and Co-N2O2.
要点2:Co价态与N/O配位环境解析
Figure 2. Synchrotron-based X-ray absorption spectroscopy (XAS) characterization of Co─N/O coordination sphere. a) Co K-edge X-ray absorption near-edge structure (XANES) spectra of Co-N3O1, Co-N2O2 samples and reference materials (Co foil, CoO, Co3O4, and CoPc). b) XPS spectra of Co 2p for Co-N3O1 and Co-N2O2 samples. c) Fourier-transformed extended X-ray absorption fine structure (EXAFS) spectra in R-space for Co-N3O1, Co-N2O2 samples and reference materials (Co foil, CoO, Co3O4, and CoPc). d) Wavelet transform (WT) contour plots of the Co K-edge EXAFS data for Co foil, CoPc, CoO, Co-N3O1, and Co-N2O2. EXAFS fitting results and corresponding atomic coordination structures for e) Co-N3O1 and f) Co-N2O2.
要点3:Co-SACs催化性能与ROS机理
Figure 3. Catalytic performance and reactive oxygen species analysis. a) The degradation curves of UCN, HUCN, CO-N3O1, and Co-N2O2. b) The degradation processes and kobs of Co-N2O2 for different hydrothermal times. c) The cycling and regeneration experiments. d) The kobs of quenchingexperiments of Co-N3O1 and Co-N2O2. e) The 1O2 concentration measured by DPBF. Reaction conditions: [DPBF]0 = 0.5 mM, [cat.] = 0.1 g L−1, and [PMS] = 0.5 mM. f) The PMSO conversion and PMSO2 generation of Co-N3O1 and Co-N2O2. Reaction conditions: [PMSO]0 = 0.5 mM, [cat.] =0.1 g L−1, and [PMS] = 0.5 mM. The DMPO-•OH/•SO4− EPR spectra and TEMP-1O2 EPR spectra of cat./PMS system g) and cat./PMS/SMX system (h).
要点4:Co-SACs电化学ETP性能解析
Figure 4. Electrochemical tests of Co-N3O1 and Co-N2O2. a) Co-N3O1 and b) Co-N2O2 linear sweep voltammetry (LSV) curves. c) Cyclic voltammetry (CV) curves of Co-N3O1 and Co-N2O2. d) Co-N3O1 and e) Co-N2O2 i-t curves. f) Electrochemical impedance spectroscopy (EIS) of Co-N3O1 and Co-N2O2.
要点5:公斤级Co–SACs合成与应用
Figure 5. Exploration of practical production and applications. a) Synthesis of kilogram-scale catalyst: (I) fertilizer-grade urea and Co(OH)2; (II) mechanical grinding and mixing; (III) uniform precursor before calcination; (IV) photograph of sample packaging in electric kiln before calcination; (V) electric kiln used for kilogram-scale catalyst; (VI) weighing of kilogram-scale catalyst. (b) The degradation processes and kobs of Co-N3O1, kg-Co-N3O1, Co-N2O2 and kg-Co-N2O2. c) Cost proportion of kilogram-scale catalyst; d) The TOC of 100-fold diluted landfill leachate after treated by kg-Co-N2O2 in different condition. e) 14 times cycling experiments of kg-Co-N2O2. Reaction condition: [cat.] = 0.1 g L−1, [PMS] = 0.5 mM, and [SMX] = 100 mg L−1. Regeneration conditions are hydrothermal for 2 h or 12 h. f) Dynamic membrane reaction experiment of kg-Co-N2O2. Reaction condition: t = 10 h, m[cat.] = 50 mg, v[PMS, 0.5 mM] = 3 mL h−1, v[SMX, 100 mg L−1] = 300 mL h−1. g) Dynamic membrane catalysis experiments facility (for MB) and the membrane of kg-Co-N2O2 after treat 100 mg L−1 MB.
综上所述,研究者提出了一种经济高效且可规模化合成Co单原子催化剂的方法,并通过水热策略实现了O配位数的提升。多种光谱技术(XAS、XPS和Raman)共同证实了Co-N3O1向Co-N2O2结构的成功调控。结合ROS分析与DFT计算的机理研究表明,优化后的Co-N2O2结构能够通过1O2、HVMO和ETP等非自由基途径显著增强PMS活化能力。进一步实现公斤级规模合成,其成本仅为34.68美元/千克,并在复杂废水处理中的有效性得到验证,成功架起了从基础配位化学到实际环境应用的桥梁。该成果不仅加深了对SACs–PMS活化中结构–性能关系的理解,也为环境修复的工业化应用提供了切实可行的方向。
The first authors of the article are Lin Liu and Bo Chen, both of whom have made equal contributions to the research. The corresponding authors are Bo Chen and Zhili Li, both from the School of Chemical Engineering at Guangxi University. The author team also includes Tong Wu, Mingzhi Li, Hairong Chen and Yuanyuan Ge. The research of this team mainly focuses on green chemical new materials and petrochemical resource processing technology, dedicated to developing highly efficient and environmentally friendly catalysts to address pollution issues . Angewandte Chemie International Edition Pub Date : 2025-09-19 , DOI: 10.1002/anie.202508330
文章链接:https://doi.org/10.1002/anie.202508330
声明

