大数跨境
0
0

陕西理工大学/大连理工大学等AM综述: 基于单原子催化的类Fenton活性/稳定性同步强化策略

陕西理工大学/大连理工大学等AM综述: 基于单原子催化的类Fenton活性/稳定性同步强化策略 邃瞳科学云
2025-05-12
1

第一作者:赵航航讲师(陕西理工大学)

通讯作者:邵先钊教授(陕西理工大学)、许醒授(山东大学)、杨静仁(上海环境科学研究院)、刘艳彪教授(大连理工大学)

论文DOI:10.1002/adma.202503217



全文速览

近日,陕西理工大学邵先钊教授与大连理工大学刘艳彪教授等人作为通讯作者,在国际顶级期刊《Advanced Materials》上合作发表了一篇题为“Synchronization Strategy for Activity and Stability in Fenton-Like Single-Atom Catalysis”的综述论文。单原子催化剂(Single-Atom Catalysts, SACs)在面向环境应用的类芬顿体系中极具应用潜力,然而当前研究多集中于催化活性与机制调控,对实际应用中的关键问题——活性与稳定性的协同提升——关注较少。本文首次系统性地总结了类芬顿单原子催化的活性与稳定性同步优化策略,深入解析了配位工程、限域效应、载体替代以及模块化设计四大核心策略的原理及作用机制,探讨了机器学习与生命周期评估(Life Cycle Assessment, LCA)在这一领域的辅助功能。通过分析载体特性、配位构型及反应环境间的相互作用,本文揭示了影响SACs性能的关键因素,有望为开发高效的单原子催化剂提供了新的技术参考。




图文导读

1. 前言

单原子催化剂(SACs)凭借其高催化效率、最大化原子利用率和丰富活性位点,在环境修复、能源转换和化学合成等领域展现出巨大潜力,尤其在类芬顿体系中通过诱导生成·OHSO·等活性氧物质降解有机污染物。尽管与纳米金属相比,SACs 更具分散性和金属载体强相互作用(SMSI),但在多次循环后仍会因金属原子浸出、迁移、聚集以及载体分解等原因导致活性显著下降。

Figure 1. (a) Timelines of Fenton-like single-atom catalysis; (b) Synchronization strategy for activity and stability in Fenton-like single-atom catalysis as well as the future prospects of this review.

基于此,本文总结了四大同步提升活性与稳定性的策略:(i)通过配位工程将自由基转化为选择性更高、腐蚀性更低的非自由基途径;(ii)借助限域效应锚定单原子以调控反应路径;(iii)开发抗氧化降解性能优异的非碳基载体;(iv)开展催化模块化设计。此外,机器学习辅助设计和生命周期评估(LCA)的引入,为研发兼具高活性和高稳定性的SACs提供了新思路。


2. 配位工程

SACs通过引入氮、硫、氯等杂原子,可精确调控金属活性位点的电子结构和配位环境,从而优化活性氧生成路径并显著提升过硫酸盐(PMS)活化效率;同时,将单原子与亚纳米团簇多尺度协同构筑,借助强化金属-载体相互作用(SMSI)优化电子结构,既加快了反应动力学,也提高了中间体稳定性,已在各种催化体系中取得了突破性进展。然而,这类复合系统在界面电子耦合机理、单原子与团簇空间分布的精确设计,以及在强氧化环境下的长期稳定性等方面仍面临重大挑战,亟需结合先进的表征和理论计算来揭示其构效关系并指导材料创新。

Figure 2. (a) Fabrication scheme of the Cl1-Co-N4-S1 catalyst via the salt-templating strategy; (b) WT of different Co-SACs; (c) Stability of Cl1-Co-N4-S1catalyst in different matrixes. Reproduced with permission.Copyright 2025, Nature Publishing Group(d) Fabrication of phosphorus-doped Fe–N–C via Fe-ZIF-8 as precursor. Reproduced with permission. Copyright 2023, American Chemical Society. (e) Catalytic stability of FeOF in H2O2 system. Reproduced with permission.Copyright 2025, Nature Publishing Group.

Figure 3. Traditional sub-nano metal species and their advantages/dis advantages. (a) Advantages of single atoms; (b) Advantages of metal clusters; (c) Advantages of single atoms + metal clusters; (d) Challenges of these sub-nano metal species. (e) Regulation pathways of sub-nanoscale active sites; (f) Parameters such as d-band center statistics and IpCOHP of interactions between different substrates and active sites; (g) Role of sub-2 nm sites in the acetylene semi-hydrogenation. Reproduced with permission.Copyright 2025, John Wiley and Sons.

Figure 4. (a) Scheme of the transformation of Fe–Nx–C into FeNxSey clusters; (b and c) Characterization of co-coordination structure of Fe–Nx–C and FeNxSeclusters; (d and e) Stability comparison of Fe–Nx–C and FeNxSeclusters in H2SO4 electrolyte containing 1 mM H2Oafter 10,000 cycles; (f) Fe dissolution of Fe–Nx–C and FeNxSeclusters; (g) Stimulateddemetallization on FeNxSey with the background of H2O2. Reproduced with permission.Copyright 2025, John Wiley and Sons. (h) Long-range interaction between Cu-Co alloy NPs and Co SAs for enhanced PMS activation.Reproduced with permission. Copyright 2024, Elsevier.

双原子催化剂(DACs)则通过相邻金属原子对偶组合丰富催化结构、同步吸附反应物,精细调控反应中间体的吸附模式,实现对反应路径的精准控制,已在 Fe–CuMo–CoCo–Fe 二原子位点以及可调单原子间距激发非自由基 FeIV=O  PDS 双站点吸附等Fenton-like 体系中展现出超高活性与稳定性。不过,DACs 的配位构型精准干预、活性位点空间布局与复杂电子互作同样亟待深入研究;此外,源于类芬顿固有强氧化环境的碳基载体腐蚀问题也必须通过耐腐蚀载体替代、封装设计或表面改性等多维度策略加以解决,以构建兼具高活性与耐久性的下一代环境催化系统。

Figure 5. (a) Fabrication scheme of SA-Fe-Cu-NC; (b) Coordination configuration of Fe-Cu doublet on SA-Fe-Cu-Cu-NC; (c) Decomposition efficiency of H2O2achieved by different catalysts; (d) Radical generation routine in SA-Fe-Cu-NC/H2O2 system; (e) DFT parameters for H2O2activation by different SACs; (f) Removal of COD and BOD5 by different SACs catalysts; (g) Schematic diagram of the mechanism of high activity of dual single-atom sites. Reproduced with permission.Copyright 2024, John Wiley and Sons.

Figure 6. (a) Illustration of catalyst design based on coordination environment optimization and electronic structure optimization, (b) HAADF STEM images of Co/Fe-DACs; (c)pairwise comparisons of synthesis-structure-properties for cobalt-based catalyst; (d)Pairwise comparisons of synthesis–structure–properties for iron-based catalyst; (e) Degradation performance of organics by different SACs via activating H2O2. Reproduced with permission. Copyright 2024, John Wiley and Sons.

Figure 7. (a) Illustration of the degree of spatial matching and interaction of the reactants (ethanol as example) adjusted with the distance between the positions of single atoms. Reproduced with permission.Copyright 2024, John Wiley and Sons.(b)AC-HAADF-STEM of Fe-N-C with different Fe-Fe distances; (c) FeIV=O concentrations based on different Fe-N-C samples; (d) Mechanism of FeIV=O generation based on the adjacent Fe-Fe single atoms.Reproduced with permission. Copyright 2023, John Wiley and Sons. (e)HAADF-STEM image ofCu-SAC with suitable site distance and its intensity profile; (f) Cu-O bond length illustration of the PDS adsorbed on 2Cu-N4; (g) Contaminants removal of Cu-SACs in actual water matrixes.Reproduced with permission.Copyright 2022, John Wiley and Sons.


3. 限域工程

限域催化系统通过多孔材料、碳基纳米结构及氧化物基质的空间限域效应,有效稳定单原子活性位点并优化反应路径,显著提升类芬顿体系的催化效率与稳定性。同步自组装技术通过配体场效应精准构筑限域结构,但面临原子级定位精度不足及合成工艺复杂等规模化挑战。亚纳米尺度限域利用埃级通道强电子耦合和毛细作用(>50 bar)大幅提升单线态氧生成效率(38.6倍),但实际应用中仍需攻克埃级通道可控构建、活性组分均匀负载及复杂工况下长效稳定性等关键瓶颈。

Figure 8. (a) Schematic illustration of the synthesis of confined M-SACs; (b) WT of Fe K-edge of Fe-foil and confined Fe-SAC-4; (c) Proposed schematic of the density of Fe-N4 sites in confined Fe-SAC; (d) Comparison of the Fe loadings of as-prepared Fe-SACs by using different amounts of FeCl3. (e) Proposed schematic of pore structures in Fe-SAC by using different concentrations of SiO2 hard template. (f) Comparison of the pore structure parameters of Fe-SAC-1 and Fe-SAC-4.(g) Excellent cyclic stability of confined Fe-SAC-4. Reproduced with permission.Copyright 2025, John Wiley and Sons. (h) Scheme of Fe atoms confined a sandwich-like structure. (i) Stability comparison between confined SACs and non-confined SACs. Reproduced with permission.Copyright 2021, Elsevier. (j) Scheme of 100% generation of high-valence iron-oxo species through the surface confining effect of FeSA-MNC. Reproduced with permission.Copyright 2023, American Chemical Society.

Figure 9. (a) Synthetic and structural Scheme of mSAFe NCs; (b) TEM images of the mSAFe NCs; (c) Particle size distribution of mSAFe NCs; (d) HAADF-STEM image of mSAFe NCs; (e) Free energy diagrams of mSAFe NCs and Fe-N4-C during the Fenton catalysis; (f) Chromogenic mechanism of TMB induced by catechol-motivated Fenton catalysis. (h) TMB chromogenic curves for varied concentrations of mSAFe NCs upon the addition of H2O2 at 0, 4 and 8 h in mildly acidic PBS. Reproduced with permission Copyright 2023, John Wiley and Sons.


4. 非碳基载体

SACs在类芬顿反应中虽具高活性,但氮掺杂碳载体易被ROS氧化破坏,导致金属原子团聚、活性衰退;为此,研究者转向金属氧化物、二维金属基底和硅基材料等非碳基载体,通过表面配位不饱和位点键合、表面原子置换、桥接配体配位及空间限域四种金属载体相互作用模式,强力锚定单原子并提升稳定性。这些策略通过优化局域化学环境与强化SMSI,协同增强反应物吸附与活化能力,突破了活性选择性稳定性的权衡,为高效耐用的类芬顿催化系统设计提供了新思路。硅基材料凭借高热稳定性与抗ROS氧化能力,成为稳定SACs的理想载体。其纳米通道通过限域效应锚定金属单原子,抑制迁移聚集,显著提升催化活性与循环稳定性。然而,硅基材料的化学惰性虽可抵御载体腐蚀,却限制了通过SMSI调控电子结构的能力,导致现有体系依赖介孔限域或高负载量补偿活性,制约实际应用。未来需突破硅基电子惰性瓶颈,开发兼具电子调控与结构稳定的新型载体,实现高效催化活性与长效稳定性的协同优化。

Figure 10. Schematic illustration of four M-SI patterns for anchoring SA metals on metal-based supports.Reproduced with permission.Copyright 2022, Elsevier.

Figure 11. (a and b) HAADF-STEM image of CoN1O2/Mn3O4; (c) intensity of surface plots in (b); (d) Schematic mechanism of the generation of CoIV=O. Reproduced with permission Copyright 2025, John Wiley and Sons.(e)HAADF-STEM image of resulting Cu5/FeS2 catalyst; (f) Image of intensity line surface plots in (e); (g) Adsorption of H2Oonto the Cu−Fe sites; (h) Scheme of selective H2Oactivation on the dual Cu−Fe sites; (i) Degradation activity and stability comparisons of Cu5/FeS2 catalyst and other catalysts. Reproduced with permission.Copyright 2022, John Wiley and Sons.

Figure 12. (a) Fabrication of Co-SA/MXene via defect trapping/NaBHreduction routine; (b) TEM image of Co-SA/MXene; (c) HAADF-STEM images of Co-SA/MXene and its representative intensity profile; (d) Wavelet transforms of Co-SA/MXene; (e) Application of Co-SA/MXene in the complicated water matrixes. Reproduced with permission.Copyright 2025, Elsevier.

Figure 13. (a) Fabrication scheme of Fe-V-MXene; (b) WT of Fe-V-MXene; (c) Designation of dual-atom sites by DFT and experimental verification; (d) Rate of contribution by different ROS in different catalysts/PMS systems. Reproduced with permission.Copyright 2025, Elsevier. (e) Removal of contaminants during membrane filtration in Co-SA/MXene based UF membrane. Reproduced with permission.Copyright 2025, Elsevier. (f) Absorption and degradation performance towards the contaminants with the background of versatile environmental interferences in Cu-SA/MXene/PMS system; (g) Contribution of radical/nonradical pathways in Cu-SA/MXene/PMS system and its nanoparticle counterpart. Reproduced with permission.Copyright 2025, Elsevier. 

Figure 14. (a) SEM images of different silicon-based SACs and their particle size distribution. (b) TEM images of different silicon-based SACs. (c) EDS mappings of silicon-based SACs. (d) Scheme of spatial structures of different silicon-based SACs.(e) AC-HAADF-STEM images of different silicon-based SACs. (f) Concentration distribution of PMS in different silicon-based SACs via molecular dynamic simulations. Reproduced with permission.Copyright 2024, Nature Publishing Group.


5. 用于提升活性与稳定性的催化单元

为了推进SACs在类芬顿工艺中的工程化应用,研究人员将其固定于催化膜、催化柱、过滤器和填料等功能性模块中,借助高机械强度、稳定传质界面与可控反应路径,有效解决粉体团聚失活、回收困难和二次污染问题,同时在反应器中实现催化剂活性与稳定性的动态协同,提升了在复杂水处理中抗干扰与运行可靠性。但在复杂环境下的效率衰减、高成本合成及活性位点长期耐久性方面仍存在瓶颈,亟需通过耐久材料、反应动力学优化、可扩展制备和真实场景验证的综合框架,实现实验成果向实际工程的稳健转化。

Figure 15. (a) Schematic diagram of the continuous-flow reactor based on the Fe-SAC; (b) Actual photo of Fe-SAC/PVDF membrane and (c) cross-sectional SEM images of the Fe-SAC/PVDF membrane. Reproduced with permission.Copyright 2025, John Wiley and Sons. (d)SACs macrostructures with versatile sizes packed in the column. Reproduced with permission.Copyright 2024, John Wiley and Sons. (e) Diagram of circulating fluidized bed as well as its transient velocity. Reproduced with permission.Elsevier B.V. (f) A schematic illustration of the filter reactor and SEM image of Co1CNCl/S adsorbed on cotton fibres. (g) Phenol removal efficiency using pristine cotton and Co1CNCl/S. Reproduced with permission.Copyright 2025, Nature Publishing Group.

Figure 16. CMs loaded with SA-Mn catalysts. Reproduced with permission.Copyright 2025, Elsevier. (b) Mechanism of confinement catalysis of SACs-based CMs by comparison with NPs-based CMs. Reproduced with permission.Copyright 2025, American Chemical Society. (c) 3D printed large-size MG/Cu catalyst.Reproduced with permission.Copyright 2021, American Chemical Society.

Figure 17. Determining factors for synchronously promoting the Fenton-like activity/stability in different strategies.


6. 机器学习辅助

随着人工智能与机器学习(ML)技术的快速发展,SACs的结构设计与性能优化迎来革新。通过解析金属中心、配位环境等原子级特征与宏观性能的复杂映射关系,ML可精准预测催化剂构效关系,优化活性位点配置与合成工艺参数,从而提升催化剂的耐久性及稳定性,显著降低试错成本并加速高性能SACs的开发进程。

然而,当前类芬顿单原子催化的活性-稳定性协同调控研究仍缺乏统一的理论框架与多维度数据库支撑。为此,建议整合高通量计算、原位表征与自动化实验数据,构建涵盖金属种类、配位构型、载体特性及环境响应参数的类芬顿单原子催化数据库,并开发跨尺度知识迁移模型。通过融合第一性原理计算与ML预测,可揭示活性-稳定性的动态平衡机制,突破传统试错法局限,为设计兼具高效性与长效性的催化系统提供理论基石。

Figure 18. (a) Overview of the data mining process, including selection of candidate elements for M, DFT optimization of structures, and discarding unstable structures. (b) Volcanic maps of Gmaxvariation with GHO* and GO*. (c) Schematic illustration of screening methods and examples of M-N4configurations(M = Fe, Co, Mn, Cu and Ni). (d) GO*, GOH* and Gmax of typical 5 kinds of M-N4 configurations. Reproduced with permission.Copyright 2025, John Wiley and Sons.

Figure 19. (a-c) Pourbaix diagrams of four transition metal atoms (Cr, Mn, Fe, and Co) and three carriers ((a) N-doped graphene, (b) carbon nitride, and (c) covalent organic framework). Reproduced with permission Copyright2023, American Chemical Society.

Figure 20. (a) Workflow diagram of the data partitioning methodology. (b) Performance evaluation of RF model based on the predicted and real data. Reproduced with permission.Copyright 2024, Elsevier.

Figure 21. Flowchart of methodology implemented for the predictive modeling of degradation activities and stabilities from different Fenton-like systems.


7. 超越环境修复:与能源与健康领域的协同发展

SACs在类芬顿反应中的应用已从污染物降解拓展至能源回收与健康领域,展现出跨学科协同潜力。在能源回收方向,SACs通过耦合光芬顿与光催化技术,同步实现污染物降解与清洁能源(如氢气)生产,构建环境修复与能源再生的闭环系统。然而,光芬顿产氢效率仍需优化,污染物降解与能源生成的串联集成技术尚处探索阶段,且催化剂在连续运行中的长期稳定性(如抗金属浸出与结构降解)是规模化应用的核心挑战。

Figure 22. (a) Schematic illustration of FeSA-hCN; (b) SEM and AC HAADF-STEM images of FeSA-hCN and the corresponding line intensity profile; (c) Hydrothermal Fenton-like reaction for the degradation of MPs; (d) Photocatalytic H2 production mechanism using the mixtures of reaction products after hydrothermal degradation of UHMWPE-based MPs. Reproduced with permission. Copyright 2024, Nature Publishing Group.


在健康领域,SACs通过高效生成活性氧(ROS),在医疗废水处理、抗生素耐药菌(ARB)灭活及抗性基因(ARG)降解中表现突出。其机制涉及ROS对微生物结构的破坏及基因的矿化分解,显著降低耐药性传播风险。尽管如此,SACs在复杂环境(如高离子强度、多变pH)下的材料稳定性、规模化生产成本及专用设备的精密制造技术仍是实际应用的瓶颈。未来需聚焦稳定性增强策略(如载体优化、电子结构调控)与工艺集成创新,推动SACs在环境-能源-健康领域的闭环应用,实现高效、可持续的多功能催化技术突破。

Figure 23. (a) Fabrication scheme of the NGA-Mn catalyst; (b) Atomic contents of various elements in different catalysts; (c) Preferential coordination between Mn2+ and NGA in NGA-Mn catalyst based on DFT calculation; (d) Minimum concentration values and cytocompatibility values of NGA-Mn; (e) Treatment of Escherichia coliand Staphylococcusaureus with NGA-Mn for 30 generations; (f) Escherichia coli treated with NGA-Mn for 30 generations and Escherichia colitreated with colloidal silver NPs for 20 generations. Reproduced with permission. Copyright 2024, John Wiley and Sons. (g) Concentration-dependent antibacterial activities of versatile catalysts in aqueous suspensions ((a1, c1) blank, (a2, c2) Cu2O, (a3, c3) Ti3C2@Cu2O, and (a4, c4) Ag@Ti3C2@Cu2O). Reproduced with permission. Copyright 2020 Elsevier.

Figure 24. (a) Scheme of Co−SACs for the removal of ARGs; (d) Comparison of degradation of ARGs and PMS decomposition by different catalysts; (c) Changes of agarose gel electrophoresis of tetA by different catalysts (CVO and Co−CVO); (d) Quantitative analysis of the 1Oamounts generated by different catalysts; (e) ARGs removal in different water bodies. Reproduced with permission. Copyright 2024,John Wiley and Sons. (f) Changes of agarose gel electrophoresis of tetA by the treatment of CoSA/Ti3C2Tx, (e) reuse ability of CoSA/Ti3C2Tx, (g) schematic illustration of adsorption positions of tetA on CoSA/Ti3C2Tx. Reproduced with permission. Copyright 2023, American Chemical Society.


8. LCA分析辅助SAC研制

LCASACs辅助类Fenton废水处理工艺的研发中发挥关键作用,其通过量化分析催化剂合成与应用环节的资源消耗、环境影响及经济成本,推动环保材料和高效工艺的优化。当前研究多聚焦实验室尺度,虽验证了SACs的环境效益,但缺乏对工业场景下设备能耗、人力运输、废催化剂回收及长期生态风险的系统性评估。未来需构建涵盖全产业链的LCA模型,结合真实工业数据解析SACs规模化应用的技术瓶颈与可持续潜力,为废水治理技术的绿色升级提供科学支撑。

Figure 25. (a) Analysis of the potential of sludge-based SACs production in China; (b) Sludge upgrade cycle defined as the LCA system boundary for SACs; (c) Identification of environmental hotspots in sludge incineration and sludge-based SACs production strategies; (d) Environmental costs of sludge incineration versus sludge-based SACs production strategies for treating 1 ton of sludge; (e) Comparison of the carbon footprint of sludge disposal and its electricity carbon footprint under sludge incineration and sludge-based SACs production strategies; (f) Analysis of operating costs for sludge incineration and upcycling strategies; (g) Assessment of the impact of SAC price and plant capacity on the payback period. Reproduced with permission. Copyright 2024, Nature Publishing Group. (h) Impact scores of various descriptors in LCA for PMS-free and low-PMS Fe/N-SAC systems. Reproduced with permission. Copyright 2025, John Wiley and Sons.


9. 结论和未来展望

本综述聚焦配位调控、限域效应、载体替代及催化模块设计四大协同策略,提出通过强化金属-载体相互作用、优化反应路径和抗腐蚀载体设计可实现性能突破,并建议构建包含标准化评估流程与机器学习辅助的描述符数据库,形成数据驱动的活性-稳定性协同优化框架;同时提出通过模块尺寸精准调控与单原子分散策略提升规模化应用潜力,最后强调需开发温和高效的表面再生技术以平衡催化活性与结构稳定性。

Figure 26. Establishing uniform protocols for evaluating the Fenton-like activity and stability of SACs.




作者介绍

赵航航陕西理工大学化学与环境科学学院青年讲师。2023年于长安大学水利与环境学院获博士学位,主要研究领域为高级氧化技术及新型污染物的迁移转化机制。以第一或通讯作者身份在《Advanced Materials》、《Water Research》等期刊发表SCI论文20余篇。


邵先钊,现任陕西理工大学化学与环境科学学院教授、副院长。2013年于北京理工大学化工与环境学院获得博士学位。2014年至2017年期间,在中国科学院大连化学物理研究所从事博士后研究工作。主要研究领域包括吸附催化水处理技术、二氧化碳捕获及催化转化等方向。以第一或通讯作者身份在《Advanced Materials》、《Chem》和《Applied Catalysis B》等期刊发表学术论文30余篇。


许醒,山东大学环境科学与工程学院教授,山东省优秀青年基金获得者。入选全球前2%顶尖科学家榜单。以通讯作者身份在《Proceedings of the National Academy of Sciences (PNAS)》、《Chemical Society Reviews》、《Angewandte Chemie International Edition》、《Advanced Materials》、《Environmental Science & Technology》、《Water Research》、等期刊发表SCI收录论文100余篇。论文累计被引用15,000余次,H指数为65;其中25篇论文入选ESI高被引论文,5篇论文入选ESI热点论文。曾获教育部自然科学奖二等奖2项、山东省科技进步一等奖1项以及山东省自然科学奖二等奖1项。


杨静仁,博士,2021年毕业于上海交通大学。入选上海市科技创新计划启明星青年人才项目。现就职于上海市环境科学研究院。主要从事农业农村污染防控与新污染物治理领域的研究。主持国家自然科学基金青年项目、上海市人才计划项目以及上海市农业农村委员会项目等3项科研课题。在《Water Research》、《Applied Catalysis B》等期刊上发表SCI论文20余篇。


刘艳彪,大连理工大学教授,入选国家级高层次青年人才计划。荣获南京大学紫金全兴青年学者奖、国际水协会首创水星奖以及中国纺织工业联合会教学成果二等奖。以第一或通讯作者身份在《Advanced Materials》、《Accounts of Chemical Research》、《ACS Nano》、《Environmental Science & Technology》、《Water Research》等期刊发表SCI论文150余篇,论文总被引超过10,000次,H指数为62;其中发表期刊封面论文13篇,单篇被引超百次的论文40篇。

 


文献信息

Synchronization Strategy for Activity and Stability in Fenton-Like Single-Atom Catalysis, Advanced Materials, https://doi.org/10.1002/adma.202503217.


备注Permissions for reuse of all Figures have been obtained from the original publisher. Copyright 2025, John Wiley & Sons Inc.

声明

本文仅用于学术分享,如有侵权,请联系后台小编删除
欢迎关注我们,订阅更多最新消息
投稿、荐稿、爆料:Editor@scisight.cn

“邃瞳科学云”直播服务


“邃瞳科学云”推出专业的自然科学直播服务啦!不仅直播团队专业,直播画面出色,而且传播渠道多,宣传效果佳。
“邃瞳科学云"平台正在收集、整理各类学术会议信息,欢迎学会、期刊、会议组织方择优在邃瞳平台上进行线上直播,希望藉此帮助广大科研人员跨越时空的限制,实现自由、畅通地交流互动。欢迎老师同学们提供会议信息(会有礼品赠送),学会、期刊、会议组织方商谈合作,均请联系18612651915(微信同)。


点分享
点收藏
点点赞
点在看

【声明】内容源于网络
0
0
邃瞳科学云
邃瞳科学云是一个百家争鸣的个性化学术传播平台。依托新媒体矩阵,小程序及APP等完整产品线,在开展专业性的学术活动的同时,还致力于科普教育和科学传播,更自由、重分享。 格物致知,光被遐荒。Meet Your Science!
内容 8582
粉丝 0
邃瞳科学云 邃瞳科学云是一个百家争鸣的个性化学术传播平台。依托新媒体矩阵,小程序及APP等完整产品线,在开展专业性的学术活动的同时,还致力于科普教育和科学传播,更自由、重分享。 格物致知,光被遐荒。Meet Your Science!
总阅读14.0k
粉丝0
内容8.6k