
第一作者:Sung-Fu Hung, Aoni Xu, XueWang, Fengwang Li
通讯作者:Edward H. Sargent
通讯单位:多伦多大学
DOI: https://doi.org/10.1038/s41467-022-28456-9

全文速览
氮掺杂石墨烯负载的单原子可将CO2转化为CO,但不能进一步加氢生成甲烷,这是由于CO中间体的弱吸附作用。为了调节吸附能,本文研究了金属负载的单原子对CO2加氢反应的影响。作者发现了一种铜负载铁单原子催化剂,可以产生高速率的甲烷。密度泛函理论计算和原位拉曼光谱表明,铁原子吸引周围的中间体并进行加氢生成甲烷。该催化剂是通过在铜表面组装酞菁铁,然后在电催化过程中原位形成单个铁原子来实现的,这通过原位X射线吸收光谱进行鉴定。铜负载的铁单原子催化剂的CO2制甲烷法拉第效率为64%, 局部电流密度为128 mA cm-2, 而氮掺杂石墨烯负载的催化剂仅产生CO。在相同的电解质和偏置条件下,其活性是原始铜的32倍。

背景介绍
负载在金属氧化物、金属、石墨烯等载体上的金属纳米结构广泛应用于多相催化领域。金属纳米团簇的大小是最终复合材料催化特性的主要决定因素。 最近,金属催化剂(氮掺杂石墨烯负载的单原子)的最小尺寸极限因其在还原O2和CO2方面的潜力受到广泛关注。通过金属-氮配位固定在氮掺杂碳基底上的孤立金属原子表现出优异的O2还原活性,可与铂催化剂相媲美,并且还能够实现CO2还原反应,而不会发生竞争性析氢反应。
然而,到目前为止,氮掺杂石墨烯负载单原子的CO2RR产品仅限于CO,因为*CO中间体的弱结合导致气态CO的轻易释放。作者假设,如果可以通过显著改变基质的选择来调节单原子位点的电子结构,就有可能调控CO2RR对碳氢化合物的选择性。在之前关于金属负载单原子的研究中,即金属与原子分散元素的结合,DFT计算预测了反应中间体在金属负载单原子上的结合能和活化能可以被调控以促进催化行为。
本文致力于将CO2转化为甲烷,从而提供一种以化学燃料的形式储存可再生电力的方法。提高催化活性和选择性仍然是关键目标,在CO2RR产品中,鉴于甲烷已建立的存储、分配和利用基础设施,其备受关注。现有的催化剂对甲烷的选择性已超过50%,但低于实际的电流密度,这限制了工业应用。事实上,这些分析表明,初始目标选择性为60%,电流密度>100 mA cm−2。

图文解析
图1铜锚定单原子的计算和催化活性。a*CO在不同单原子催化位点上的吸附能和加氢的比较。b原始Cu和锚定各种单原子的Cu催化剂在CO2还原反应中的催化制甲烷活性。c Cu表面Fe的大小对*H和*CO吸附能的影响。d各种Fe,包括纳米颗粒、团簇和单原子形式,分散在Cu材料上的催化活性。
图2 铜负载单原子铁催化剂的机理研究。a原始Cu和Cu- FeSA的态密度。b 原始Cu和Cu-FeSA的*CO吸附能。c Cu-FeSA中单原子Fe d轨道的反卷积。d *CO跃迁示意图: 箭头表示跃迁路径,十字标记表示固定的*CO吸附位点。e 原始Cu和Cu- FeSA的C-C耦合能。f Cu-FeSA中Fe位点上产生甲烷的中间体的加氢能。g Cu-FeSA中甲烷生产的能量图。r.d.s.(速率决定步骤)是*CO中间体在Fe位点上加氢。
图3 铜锚定改性酞菁铁和铁单原子的材料表征及原位研究。a X射线衍射图。插图说明了铜表面和酞菁铁之间通过3-巯基丙酸键合。b Cu-FePc GDE的Fe K-edge扩展X射线吸收精细结构(EXAFS)。c原位EXAFS和d Fe K-edge原位XANES, 用于在CO2RR过程中识别Cu-FeSA。e原子分辨率透射电子显微镜图像和使用EELS的原子元素映射。虚线圈表示单原子铁。f原始Cu和Cu-FeSA的原位拉曼光谱。光谱的强度标度是4000 c.p.s.。
图4 Cu-FeSA的催化性能。a原始Cu和Cu- FeSA反应产物的比较。误差条表示三个独立样本的1个标准差。b甲烷的法拉第效率和局部电流密度与外加电位的关系。c甲烷生产的稳定性。d Fe K-edge的原位X射线吸收近边结构(XANES),用于12 h以上的长期研究。

本文总结
综上所述,本文开发了含有Fe单原子的Cu基催化剂,用于CO2的电化学甲烷化反应。作者将酞菁铁组装在Cu表面上,并在电催化过程中将其还原为Fe。Fe吸引CO中间体并有助于其通过COH中间体转化为甲烷。该研究工作报道的CO2制甲烷的法拉第效率为64%,局部电流密度为128 mA cm-2,在相同的电解质和偏置条件下,其活性是Cu的32倍。存在于Cu的表面的Fe单原子更活跃,并且在该研究考虑的操作时间内保持稳定。

文献来源
Hung, SF., Xu, A., Wang, X. et al. A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nat. Commun., 13, 819 (2022).https://doi.org/10.1038/s41467-022-28456-9
声明
本文仅供科研分享,不做盈利使用,如有侵权,请联系后台小编删除
“邃瞳科学云”直播服务
“邃瞳科学云"平台正在收集、整理各类学术会议信息,欢迎学会、期刊、会议组织方择优在邃瞳平台上进行线上直播,希望藉此帮助广大科研人员跨越时空的限制,实现自由、畅通地交流互动。欢迎老师同学们提供会议信息(会有礼品赠送),学会、期刊、会议组织方商谈合作,均请联系翟女士:18612651915(微信同)。
投稿、荐稿、爆料:Editor@scisight.cn
扫描二维码下载
邃瞳科学云APP

