
第一作者:李元建
通讯作者:刘巍*,陆俊*, Seh Zhi Wei*
通讯单位:上海科技大学,浙江大学,新加坡科技研究局(A*STAR)
论文DOI:https://doi.org/10.1038/s41467-024-53796-z

Figure 1 (a) Pristine Mg electrode. Due to the high hydrophilicity, Mg metal is subject to intense water invasion and side effects of gas production, resulting in the formation of a surface passivation layer consisting of Mg(OH)2, MgO, and MgH2 that blocks Mg2+ transport on the anode surface. (b) PDG-Mg electrode. Benefiting from the inherent hydrophobicity, high conductivity, and rapid Mg2+ diffusivity, the PDG protective layer not only protects the Mg foil from side reactions related to water but also promotes fast and uniform Mg2+ transport during electrochemical cycling.

Figure 2 (a) Optical image of large-size of PDG-Mg foil. (b) XRD patterns and (c) Raman spectrum of pristine Mg and PDG-Mg electrode. (d) High-resolution C 1s XPS spectrum of PDG-Mg electrode. (e, f) Photographs showing water wetting behavior on (e) pristine Mg and (f) PDG-Mg electrodes during the water treatment.

Figure 3 (a, b, e, f) SEM images and (c, g) TOF-SIMS spectra of MgOH-, MgO-, and MgH- ion obtained from pristine Mg electrode and PDG-Mg electrodes before and after 30 mins of the water treatment. (d, h) TOF-SIMS depth profiles and 3D render images of MgOH-, MgO-, and MgH- for pristine Mg electrodes and PDG-Mg electrodes after 30 mins of the water treatment.

Figure 4. The comparison of (a) band gap and (b) electrochemical stability window of MgH2 with Mg(OH)2 and MgO. (c) DFT adsorption energies of H2O molecules and Mg adatoms on MgH2(001), Mg(OH)2(001), MgO(001), and O-containing graphite. (d) Charge density difference plots, and Bader charge of Mg adatom on Mg(OH)2(001), MgO(001), MgH2(001), and O-containing graphite.(e, f) The calculated Mg diffusion energy barrier on (e) MgH2 and (f) O-containing graphite. COMSOL simulation of the distribution of (g, h) Mg2+ concentration and (i, j) electric field over the Mg anode surface with (g, i) the passivation layer and (h, j) the PDG interphase.

Figure 5. Cycling performance of water-treated pristine Mg or PDG-Mg electrodes in (a, f) symmetric cells and (g) in full cells. (b, d) SEM and (c, e) AFM images of water-treated pristine Mg or PDG-Mg electrodes after cycling. (h) Comparison of our PDG interphase with other reported artificial interphases.
通讯作者:刘巍,上海科技大学常任副教授,博士生导师,入选国家高层次青年人才项目。主要开展固态离子导体材料、纳米材料及陶瓷复合材料在能源存储和环境等领域的应用。研究方向包括: 1. 高能量、大功率、安全储能器件以及全固态锂电池的设计与应用;2. 电致变色器件;3.离子筛分膜;4. 柔性功能材料。研究成果发表在Nature Energy, Nature Communications, Science Advances, Advanced Materials, J. Am. Chem. Soc. 等知名国际期刊。
通讯作者:陆俊,浙江大学求是讲席教授、衢州动力电池和储能研究院院长、国家海外高层次人才。长期从事电极材料设计、先进表征技术、下一代电池技术等领域的科研和工业实践工作,发表论文700余篇,其中Science 1篇,Nature 6篇,Nature Energy、Nature Nanotechnology、Nature Review Materials、Nature Sustainability、Nature Communications等70余篇。所研发的高镍正极材料已实现技术成果转让,此技术荣获2019年R&D 100 Award。累计获得授权PCT专利20余件,产品已广泛应用于动力电池及储能等领域。获电化学能源储存与转换领域内20多项重要国际奖励,包括美国电化学会电池分会技术奖(2022)、美国化学会能源与燃料部(ENFL)电化学储能杰出研究员奖(2022)、国际电池材料协会(IBA)杰出研究奖(2022)等,担任多种重要学术兼职,包括任国际期刊ACS Applied Materials & Interfaces副主编等。
通讯作者:Seh Zhi Wei,新加坡A*STAR材料研究与工程研究所的高级科学家,入选《麻省理工学院科技评论》“TR35 全球科技创新领军人物”(Innovators Under 35)亚太区榜单,科睿唯安(Clarivate Analytics)材料/化学领域高被引科学家。研究领域是设计用于储能和转换的新材料,包括先进的电池和电催化剂。研究成果包括设计了锂硫电池中的第一个蛋黄壳结构,MXenes作为析氢和二氧化碳还原电催化剂的第一个实验演示。发表论文100余篇,包括Science (1)、Nature Catalysis (1)、Nature Synthesis (1)、Nature Reviews Materials (2)、Nature Machine Intelligence (1)、Nature Communications (3) 、Science Advances (1)等。据google scholar, 所发论文引用超过36988次,H因子为70。
声明
“邃瞳科学云”直播服务
扫描二维码下载
邃瞳科学云APP

