本文来源|开发者社区
但是,大家可能不知道,要做一个成功的AB Test实验,它背后的成本是非常巨大的。首先,你必须做许多的分析,了解用户习惯与需求,然后做出合理的假设并决定变数(variation),接著,需要工程部门协助将AB Test进行实作并采集相关数据,有了数据之后,产品经理需要根据假设建立模型来验证假设,不断迭代最后获得一个结论。这个成本在B2B中尤其庞大,影响因素非常的多,包含取样率、用户特性等,这也使得许多B2B领域的产品经理对AB Test望而怯步。
那么,到底在B2B领域中要不要做AB Test呢?本篇大哉问就要带大家来探讨下这个问题了!
什么是AB Test
AB Test是一种以统计为导向的测试方法,在一个页面中,针对某一场景进行两种或以上的假设,并在同一时间内对不同的用户进行测试,以观察用户的反应。

真实案例:form表单设计
经过假说与变量控制后,最后落地的就是上图两个版本的表单,产品经理分别在同一时间对不同用户投放并蒐集数据。经过持续观察语分析,最后B表单胜出,流量差距高达385%。证明了平易近人的表单设计更受用户喜爱。
真实案例:DHL折扣广告
可以把B2C领域的经验直接套用到B2B领域吗?

另一个不行的原因在于流量。在B2C领域中,流量与收益常常是成正比关系,越多的流量就能带来越多的收益,因此在进行变量控制时,流量总是会随机地分配到一个或数个变量当中。然而,在B2B领域中,流量不全然正比于收益,访问B2B网站的用户中,可能很大一部分是游客,他们可能是透过广告或搜索进到网页当中进行调研。他们并不会花钱,因为他们可能只是企业员工的一员,没有决定采购的权力。这使得许多在B2C领域中已经耳熟能详的决策模型变得毫无用武之地。
AB Test在B2B领域中的挑战
-
难以制定最佳的KPI指标 -
需要大量的资源来进行AB Test -
需要很长的时间才能得到结果
1. 难以制定最佳的KPI指标
如果你没办法测量这些指标,那就意味著你没办法最佳化它。现在市面上大多数的AB Test工具都是针B2C场景,这意味著你没办法直接套用这些工具,因为他们所使用的量测指标没办法满足B2B的场景。
2. 需要大量的资源来进行AB Test
3. 需要很长的时间才能得到结果

那B2B领域还需要做AB Test吗?
B2B产品虽然在用户体系上与B2C产品截然不同(客户不一定是用户),然而,我们依然可以透过服务好用户来影响客户的方式,来间接的增加收益。因此,怎么从AB Test当中获取用户的反馈来改进产品是很重要的。
流量虽然在B2B产品中不是主要的衡量指标(因为与收益不一定成正比),然而,它的边际效益却能间接的达成收益的目的。例如上面所提到的市场影响收入、渠道机会等等。因此,透过AB Test,我们可以更好地改善产品来提升流量以达成收益的目的。
有时候,我们会有许多的新需求与新想法,但我们却不知道市场能不能接受它,这时候就能发挥AB Test真正的价值。
如上所述,用户与客户虽然在B2B场景中不是同一个人,但是有时候我们可以透过服务好用户来进阶的影响客户决策。例如在Dataworks产品中,良好的一个编辑体验与产品流程可以增加用户的工作效率,并间接的影响客户对Dataworks产品的评价。
透过AB Test,我们可以了解用户对新功能或新版本的反馈,进而增进产品进行优化与迭代。
虽然在B2B领域中AB Test的成本相对来说高很多,但它的优势却是无法取代的!
怎么用正确的方式在B2B领域中做AB Test?
1. 应该将重点放在大的变化上而不是小的细节中
-
基础转化率 -
欲达到的转化率提升情况 -
信赖区间
根据一份报告指出,若我们希望在2%的基础转化率下再增加10%,那我们至少需要39488份样本数才能达到95%的信赖区间; 同样地,若我们希望在2%的基础转化率上再增加50%,则只需要1871个样本数就能达到95%信赖区间。这之间差了21倍的样本数。因此,越大的转化率提升可以减少所需要的样本数。
2. 从个性化开始
多数的B2B网站应该为不同的买方提供一些个性化订制的维度。一般AB Test的变数考量可以从端客户、领域别或是商业模式来著手。
举个例子,在某一个专业软件网站中便用了个性化试验。试验中他们使用考量了三个主要的领域客户:医疗、教育与金融。在分桶上,有50%的用户分配到了个性化页面,另外50%的用户则维持原来标准的页面。最后实验发现:
-
透过个性化推荐的方式使业务增长了7% -
个性化推荐的首页增加了30%的点击率 -
个性化推荐的页面增加了10%的PV -
周期同比增加了4%的业绩

3. 用正确的工具做正确的事
现今市面上许多的AB Test产品多半面向的是B2C的场景。虽然测试的方法与理论并无差别,但在实验变量与衡量实验结果的方法上却天差地别,造成这个情况的主要原因有:
-
实验样本数的差异 -
实验周期长短的差异 -
实验结果解读的差异
结语
更多精彩

识别二维码查看更多开营资讯
我在阿里写代码学会的六件事
实时化或成必然趋势?新一代 Serverless 实时计算引擎


点此阅读作者更多好文!



