智慧起航,共创未来
主题
DeepSeek、大型AI模型、强化学习、网络化控制、故障检测、特征驱动、网格去噪、多模态大型语言模型、数据驱动、非线性多智能体系统、神经网络、多目标优化、精密运动控制、鲁棒控制、遥感图像、分布式算法、博弈论...
全球科研机构
美国New Jersey Institute of Technology;英国Birmingham City University;澳大利亚Swinburne University of Technology,University of Adelaide;墨西哥Autonomous University of Nuevo Leon;日本Shibaura Institute of Technology;中国科学院自动化研究所、浙江大学、复旦大学、同济大学、哈尔滨工业大学、北京航空航天大学、西安交通大学、西安电子科技大学、中南大学、华东理工大学、北京科技大学、武汉大学、华中科技大学、中国地质大学(武汉)、深圳理工大学、西北工业大学、西南大学、广东工业大学、上海大学、深圳大学;数据堂(北京)科技股份有限公司...
Y. Zhu, J. Che, F. Wu, X. Chen, W. Zheng, and D. Zhou, “Stability, control and fault diagnosis of switched linear parameter varying systems: A survey,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1745–1761, Sept. 2025.
Doi: 10.1109/JAS.2025.125282
K. Bojappa and J. Lee, “Review on particle swarm optimization: application toward autonomous dynamical systems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1762–1775, Sept. 2025.
Doi: 10.1109/JAS.2024.125028
J. Chen, W. Gui, N. Chen, B. Luo, B. Li, Z. Luo, and C. Yang, “Data-driven time-delay optimal control method for roller kiln temperature field,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1776–1787, Sept. 2025.
Doi: 10.1109/JAS.2025.125309
>Considering high complexity of precise modeling, a data-driven time-delay optimal control method for temperature field of roller kiln is proposed based on a large amount of process data.
R. Chen, D. Zhou, and L. Sheng, “Adaptive fault-tolerant control for unknown affine nonlinear systems based on self-organizing RBF neural network,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1788–1800, Sept. 2025.
Doi: 10.1109/JAS.2025.125441
>This article presents an adaptive fault-tolerant tracking control strategy for unknown affine nonlinear systems subject to actuator faults and external disturbances.
R. Wang, Z. Hu, J. Yu, and J. Cheng, “Modelling diverse interactions and multimodality for pedestrian trajectory prediction,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1801–1813, Sept. 2025.
Doi: 10.1109/JAS.2025.125363
>We propose to devise a hand-designed graph convolution and spatial cross attention to dynamically capture the diverse spatial interactions between pedestrians.
R. Chai, T. Liu, S. He, K. Chen, Y. Xia, H.-S. Shin, and A. Tsourdos, “Adaptive dual-loop disturbance observer-based robust model predictive tracking control for autonomous hypersonic vehicles,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1814–1829, Sept. 2025.
Doi: 10.1109/JAS.2025.125291
>This paper designed a nonlinear robust model predictive control (RMPC) scheme, which can produce near-optimal tracking commands.
X. Ban, J. Liang, K. Qiao, K. Yu, Y. Wang, J. Peng, and B. Qu, “A decision variables classification-based evolutionary algorithm for constrained multi-objective optimization problems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1830–1849, Sept. 2025.
Doi: 10.1109/JAS.2025.125276
>This paper proposes a decision variables classification approach, according to the relationship between decision variables and constraints, variables are divided into constraint-related (CR) variables and constraint-independent (CI) variables.
S. Yu, Y. Qiao, F. Yang, W. Zhao, and J. Bo, “Dynamic evolutionary game-based staking pool selection modeling and decentralization enhancement for blockchain system,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1850–1865, Sept. 2025.
Doi: 10.1109/JAS.2025.125447
>This study introduces an incentive-aligned mechanism named decentralized proof-of-stake (DePoS), wherein the second-largest stakeholder is chosen as the final validator with a higher probability.
G. Cheng, B. Qiu, J. Guo, and Y. Han, “A robust direct-discretized RNN for time-dependent optimization constrained by nonlinear equalities and its applications,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1866–1877, Sept. 2025.
Doi: 10.1109/JAS.2025.125627
>To handle these issues, a robust direct-discretized RNN (RDD-RNN) model is proposed to efficiently realize time-dependent optimization constrained by nonlinear equalities (TDOCNE) in the presence of various time-dependent noises.
J. Deng, L. Zhang, W. Xue, Q. Bao, and Y. Mao, “Active compression on unknown disturbance and uncertainty via extended state observer,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1878–1892, Sept. 2025.
Doi: 10.1109/JAS.2025.125342
>To modify the disturbance estimation characteristics encountered by the observer, the active compression extended state observer (ACESO) is proposed in this study.
J. Li, Q. Yu, G. Li, and Y. He, “The application of RVM in GNSS anti-spoofing field based on the hybrid kernel function,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1893–1907, Sept. 2025.
Doi: 10.1109/JAS.2025.125522
>In this study, a GNSS spoofing jamming detection method based on hybrid kernel relevance vector machine (RVM) is proposed.
C. Li, X. Zhao, W. Xing, N. Xu, and N. Zhao, “Model-based decentralized dynamic periodic event-triggered control for nonlinear systems subject to packet losses,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1908–1919, Sept. 2025.
Doi: 10.1109/JAS.2025.125459
>This paper studies the problem of designing a model-based decentralized dynamic periodic event-triggering mechanism (DDPETM) for networked control systems (NCSs) subject to packet losses and external disturbances.
C. Fei, Y. Li, X. Huang, G. Zhang, and R. Lu, “Unsupervised dynamic discrete structure learning: A geometric evolution method,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1920–1937, Sept. 2025.
Doi: 10.1109/JAS.2025.125165
>This paper proposes a novel dynamic geometric structure learning model (DGSL) to explore the true latent nonlinear geometric structure.
M.-F. Ge, Y.-F. Li, C.-B. Wu, Z.-W. Liu, Y. Jia, and S.-S. Liu, “Hierarchical event-triggered predictive control for cross-domain unmanned systems with mixed constraints,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1938–1940, Sept. 2025.
Doi: 10.1109/JAS.2024.124797
H. Zhu, J. Lu, Y. Lou, and X. Yang, “Distributed saturated impulsive quasi-consensus for leader-follower multi-agent systems: An open topology framework,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1941–1943, Sept. 2025.
Doi: 10.1109/JAS.2024.124743
M. Yang, M. Ye, and J. Shi, “Distributed Nash equilibrium seeking for games under unknown dead-zone inputs and DoS attacks: A digital twin approach,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1944–1946, Sept. 2025.
Doi: 10.1109/JAS.2024.124875
R. Ke, J. Tang, Z. Zuo, and Y. Shi, “Koopman-based robust model predictive control with online identification for nonlinear dynamical systems,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1947–1949, Sept. 2025.
Doi: 10.1109/JAS.2025.125546
G. Wang, Z. Wei, and P. Li, “Distributed optimal formation control of unmanned aerial vehicles: Theory and experiments,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1950–1952, Sept. 2025.
Doi: 10.1109/JAS.2024.124518
H.-L. Wang, D.-Z. Yu, L.-Y. Lu, and Z.-H. Peng, “Adaptive data-driven coordinated control of UUVs for maritime search and rescue,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1953–1955, Sept. 2025.
Doi: 10.1109/JAS.2024.124767
J. Zhang, C. Qin, K. Liu, and Q. Peng, “A novel event-triggered secondary control strategy for microgrid with semi-Markov switching topologies,” IEEE/CAA J. Autom. Sinica, vol. 12, no. 9, pp. 1956–1958, Sept. 2025.
Doi: 10.1109/JAS.2024.124749
END
往期文章
联系我们
地址:北京市海淀区中关村东路95号(学会秘书处)
北京市海淀区知春路甲63号(学会会员中心)
邮编:100190
电话:010-61943120(综合)
010-61943150(会员服务)
010-61943100(公共服务)
010-61943113(宣传出版)
010-61943109(财务)
010-61943112(国际)
邮箱:caa@ia.ac.cn
中国自动化学会新媒体矩阵
点
阅读原文了解更多
喜欢的话点击在看哟~













