
数据作为新时代重要生产要素和战略资源的地位已然确立,数据治理作为激活数据要素价值的基础工程,已成为各行各业抢抓数字化发展先机的焦点和主战场。
数据治理是一个囊括了顶层设计、数据治理体系建设、数据服务和数据洞察多个模块,并不断循环改进的闭环体系。本文从数据治理实施的流程体系出发,梳理了数据从战略到应用的治理过程,以期给广大政企提供方法论与思路参考。

1、规划数据战略
数据战略是企业为了实现其长期目标在数据方面所做的方向性的选择和资源的聚焦。它是一个以终为始的路径,企业要做好数据战略的规划,就得在明确自身定位的前提下,找准目标和方向,然后再做出相应的路线规划。

数据战略来自对业务战略固有数据需求的理解:组织需要什么数据,如何获取数据,如何管理数据并确保其可靠性以及如何利用数据。一般来说,数据战略有以下三种基本类型:
(3)数据变现型数据战略:成为资产;数据变现
2、成立数据治理委员会
数据治理项目的实施绝非是一个部门的事情,必须由上往下统筹,建立专业的数据治理组织体系,确定对数据进行管理的责权利,即数据的产生者、使用者、拥有者和管理者。
在数据治理建设初期,需先成立数据治理管理委员会,从上至下由决策层、管理层、执行层构成。决策层决策、管理层制定方案、执行层实施,从而进行层级管理、统一协调。

3、确定数据治理评价与考核指标
一套奖惩有序的数据治理绩效考核体系,能帮助企业规范数据管理流程,落实数据治理相关方的职责,从而提升整体数据质量,实现数据战略。考核指标包括两个方面内容:一方面是对数据的生产、管理和应用等过程的评估和考核指标;另一方面是数据质量的评测指标。
数据治理的绩效考核6大基础维度:数据治理人员、数据质量问题、数据标准贯彻、治理策略执行、技术达成、业务价值实现。
数据治理的绩效考核4大方式:日常考核、定期考核、系统自动考核、人工考核。
数据治理技术体系
1、元数据管理
元数据是企业数据的DNA。元数据管理则是对元数据的创建、存储、整合、控制的一整套流程,是数据治理过程的一部分。
基于业务需求,元数据管理系统建设可分为以下4大模块:
(4) 元数据应用:包括元数据基础能力开放、报表指标优化清理应用、指标运算关系分析应用等。

2、主数据管理
主数据是数据之源。围绕主数据需求开展的数据治理工作,往往成为各类组织推进业务数字化的首要任务。
主数据项目实施的标准流程,分为咨询规划和实施落地两大部分,主要是4大步骤,分别是现状分析评估、体系规划、实施规划、平台搭建与落地。

(4) 平台落地:将主数据实施内容了解清楚之后就到主数据管理平台上去进行落地了,包括主数据模型、主数据维护以及主数据治理相关的内容落地。
3、数据标准管理
数据标准化是企业进行数字化转型的根基。数据标准与企业数据管理的每个域都相关,是数据治理工作的最基础内容。
数据标准的建立通常有5个步骤,包括标准分类规划、标准体系建设、标准评审发布、标准落地执行、标准运营维护。

(5)标准维护:根据业务的发展变化以及数据标准执行效果不断更新和完善数据标准。
4、数据质量管理
数据质量管理是对数据从计划、获取、共享、维护、应用、消亡生命周期的每个阶段里可能引发的各类数据质量问题,进行识别、度量、监控、预警等一系列管理活动,并通过改善和提高组织的管理水平使得数据质量获得进一步提高。
全国信息技术标准化技术委员会提出了数据质量评价指标(GB/T36344-2018 ICS 35.24.01),它包含以下几个方面,分别是完整性,一致性,准确性,时效性,唯一性和可访问性。

提升数据质量,可参考以下7大步骤实施:
(7)开发和部署数据质量操作:围绕数据质量方案制定实施计划,管理数据质量规则和标准、监控数据与规则的执行一致性,识别和管理数据质量问题,并报告质量水平。
5、数据交换共享
当数据从一个系统跨授权边界访问或传递到另一个系统时,就需要使用一个或多个协议来指定每个组织的责任、要访问或交换的数据类型和影响界别、如何使用交换数据,以及在交换系统的两端处理、存储或传输数据时如何保证数据安全。数据交换主要用于实现不同机构不同系统之间进行数据或者文件的传输和共享,可以帮助消除数据孤岛,提高信息资源的利用率。
数据资源交换共享与开发应用平台按数据的流向自下而上分为5层,分别为外部数据资源层、数据汇聚层、数据融合层、服务管理层和服务门户层。
(1)外部数据资源层:即源数据库,为系统外部数据的来源。
(2)数据汇聚层:根据获取数据的特性采用相应采集方案整合外部数据源。
(3)数据融合层:为工程数据提供持久化存储和访问的场所。
(4)服务管理层:主要包括目录管理、资源管理、服务管理、交换管理等功能。
(5)服务门户层:通过服务门户和接口支持,提供标准化服务给应用系统调用。
6、数据安全治理
数据安全管理是用来实现和维护数据保密性、完整性、可用性、可核查性、真实性和可靠性的过程。

数据安全问题贯穿数据全生命周期的各个环节。在新形势下,要做好数据安全治理,就要做好企业的数据安全防护能力建设,建立起一个强保障且动态化的安全保护机制。这个机制的攻坚点主要是三个方面:完善数据安全治理规划,提高数据安全技术防护能力和加强数据安全审计。
(3)做好数据安全监控审计:除日常审计外,还需进行以业务线为单位的专项审计。
7、数据生命周期管理
数据生命周期管理是一种基于策略的方法,包括数据的创建、使用、归档和销毁的策略和过程。
(4)数据销毁:利用评估手段保证数据销毁时机,分数据类型销毁数据。
1、数据资产管理与运营
数据作为企业一种“特殊资产”,已被列入企业的资产负债表。怎样识别数据资产、有效管理和运营数据资产,利用现有的数据资产创造价值,也是数据治理中的一项重要工作和目标。
从技术上拆解数据要素价值的生成路径,企业数据要素与资产运营的建设路径可分为三个关键阶段:数据资源化、资源产品化和产品价值化。
(3)产品价值化:数据产品已经可以放在数据要素交易市场上进行买卖了,能够带来持续的收益。这一阶段需要建立数据资产化战略、构建数据资产管理体系、实现数据资产的经营管理。

2、数据服务
数据服务是指为用户提供数据相关的各种服务和支持的一种业务模式,包括数据收集和整理、数据分析和洞察、数据可视化、数据安全和隐私、数据应用和功能这5方面。
(5)数据应用和功能:为用户提供各种应用和功能,满足不同领域和行业的需求。

凭借多年的技术积累和服务经验,亿信华辰充分整合资源,为企业夯实数据基础,释放数据要素价值,能够为客户提供从数据采集、数据加工、数据存储、数据治理、数据安全、数据分析到数据应用的数据全生命周期的全栈解决方案。未来,在现有的产品服务基础上,亿信华辰将深度发挥科技潜在优势,不断挖掘构建数字化时代背景下所必需的数据智能服务生态,助力数字经济高质量发展。
END



