
必要的加密解密基础知识
对称加密算法:是加密和解密使用同一个密钥的加密算法。因为加密方和解密方使用的密钥相同,所以称为称为对称加密,也称为单钥加密方法。
优点是:加密和解密运算速度快,所以对称加密算法通常在消息发送方需要加密大量数据时使用;
缺点是:安全性差,如果一方的密钥遭泄露,那么整个通信就会被破解。另外加密之前双方需要同步密钥;
常用对称加密算法有:DES、3DES、TDEA、Blowfish、RC2、RC4、RC5、IDEA、SKIPJACK、AES等;
非对称加密算法:而非对称加密算法需要两个密钥来进行加密和解密,这两个秘钥是公开密钥(public key,简称公钥)和私有密钥(private key,简称私钥)。
公钥和私钥是一对:公钥用来加密,私钥解密,而且公钥是公开的,私钥是自己保存的,不需要像对称加密那样在通信之前要先同步秘钥。
有点是:安全性更好,私钥是自己保存的,不需要像对称加密那样在通信之前要先同步秘钥。
缺点是:加密和解密花费时间长、速度慢,只适合对少量数据进行加密。
常用的非对称加密算法有:RSA、Elgamal、Rabin、D-H、ECC等;
HASH算法:也称为消息摘要算法。将任意长度的二进制值映射为较短的固定长度的二进制值,该二进制值称为哈希值。
常用于检验数据的完整性,检验数据没有被篡改过。常见的又 MD5(MD系列),SHA-1(SHA系列)
HTTPS 使用到了上面全部三种加密算法。
HTTPS 作用
HTTPS即使建立在SSL/TLS协议之上的HTTP。不使用SSL/TLS的HTTP通信,就是不加密的通信。所有信息明文传播,带来了三大风险。
窃听风险(eavesdropping):第三方可以获知通信内容。
篡改风险(tampering):第三方可以修改通信内容。
冒充风险(pretending):第三方可以冒充他人身份参与通信。
SSL/TLS协议是为了解决这三大风险而设计的,希望达到:
所有信息都是加密传播,第三方无法窃听。
具有校验机制,一旦被篡改,通信双方会立刻发现。
配备身份证书,防止身份被冒充。
互联网是开放环境,通信双方都是未知身份,这为协议的设计带来了很大的难度。而且,协议还必须能够经受所有匪夷所思的攻击,这使得SSL/TLS协议变得异常复杂。
HTTPS 历史
互联网加密通信协议的历史,几乎与互联网一样长。
1994年,NetScape公司设计了SSL协议(Secure Sockets Layer)的1.0版,但未发布。
1995年,NetScape公司发布SSL 2.0版,很快发现有严重漏洞。
1996年,SSL 3.0版问世,得到大规模应用。
1999年,互联网标准化组织ISOC接替NetScape公司,发布了SSL的升级版TLS 1.0版。
2006年和2008年,TLS进行了两次升级,分别为TLS 1.1版和TLS 1.2版。最新的变动是2011年TLS 1.2的修订版。
目前,应用最广泛的是TLS 1.0,接下来是SSL 3.0。但是,主流浏览器都已经实现了TLS 1.2的支持。TLS 1.0通常被标示为SSL 3.1,TLS 1.1为SSL 3.2,TLS 1.2为SSL 3.3。
基本运行过程
HTTPS 基本运行过程:
利用对称加密算法来加密网页内容,那么如何保证对称加密算法的秘钥的安全呢?
使用非对称加密算法来获得对称加密算法的秘钥,从而保证了对称加密算法的秘钥的安全,也就保证了对称加密算法的安全。
这里这样安排使用的原理是,利用了对称加密算法和非对称加密算法优点,而避免了它们的缺点。利用了对称加密算法速度快,而非对称加密算法安全的优点;同时巧妙的避免了对称加密算法的不安全性,以及需要同步密钥的缺点,也避免了非对称加密算法的速度慢的缺点。实在是巧妙了。
这有两个问题:
如何保证非对称加密算法公钥不被篡改?
解决方法:将公钥放在数字证书中。只要证书是可信的,公钥就是可信的。
公钥加密计算量太大,如何减少耗用的时间?
解决方法:每一次对话(session),客户端和服务器端都生成一个"对话密钥"(session key),用它来加密信息。由于"对话密钥"是对称加密算法,所以运算速度非常快,而服务器公钥只用于加密"对话密钥"本身,这样就减少了加密运算的消耗时间。(也就是网页内容的加密使用的是对称加密算法)
因此,SSL/TLS协议的基本过程是这样的:
客户端向服务器端索要并验证非对称加密算法的公钥。
双方协商生成对称加密算法的"对话密钥"。
双方采用对称加密算法和它的"对话密钥"进行加密通信。
上面过程的前两步,又称为"握手阶段"(handshake)。
5. 握手阶段的详细过程
"握手阶段"涉及四次通信,我们一个个来看。需要注意的是,"握手阶段"的所有通信都是明文的。
客户端发出请求(ClientHello)
首先,客户端(通常是浏览器)先向服务器发出加密通信的请求,这被叫做ClientHello请求。
在这一步,客户端主要向服务器提供以下信息。
浏览器支持的SSL/TLS协议版本,比如TLS 1.0版。
一个浏览器客户端生成的随机数,稍后用于生成对称加密算法的"对话密钥"。
浏览器支持的各种加密方法,对称的,非对称的,HASH算法。比如RSA非对称加密算法,DES对称加密算法,SHA-1 hash算法。
浏览器支持的压缩方法。
注意是客户端发送的信息之中不包括服务器的域名。也就是说,理论上服务器只能包含一个网站,否则会分不清应该向客户端提供哪一个网站的数字证书。这就是为什么通常一台服务器只能有一张数字证书的原因。
对于虚拟主机的用户来说,这当然很不方便。2006年,TLS协议加入了一个Server Name Indication扩展,允许客户端向服务器提供它所请求的域名。
服务器回应(SeverHello)
服务器收到客户端请求后,向客户端发出回应,这叫做SeverHello。服务器的回应包含以下内容。
确认使用的加密通信协议版本,比如TLS 1.0版本。如果浏览器与服务器支持的版本不一致,服务器关闭加密通信。
一个服务器生成的随机数,稍后用于生成对称加密算法的"对话密钥"。
确认使用的各种加密方法,比如确认算法使用:RSA非对称加密算法,DES对称加密算法,SHA-1 hash算法
服务器证书。
除了上面这些信息,如果服务器需要确认客户端的身份,就会再包含一项请求,要求客户端提供"客户端证书"。比如,金融机构往往只允许认证客户连入自己的网络,就会向正式客户提供USB密钥,里面就包含了一张客户端证书。
客户端回应
客户端收到服务器回应以后,首先验证服务器证书。如果证书不是可信机构颁布、或者证书中的域名与实际域名不一致、或者证书已经过期,就会向访问者显示一个警告,由其选择是否还要继续通信。
如果证书没有问题,客户端就会从证书中取出服务器的非对称加密算法的公钥。然后,向服务器发送下面三项信息。
一个随机数。该随机数用服务器发来的公钥进行的使用非对称加密算法加密,防止被窃听。
编码改变通知,表示随后的信息都将用双方商定的加密方法和密钥发送(比如确认使用:RSA非对称,DES对称,SHA-1 hash算法)。
客户端握手结束通知,表示客户端的握手阶段已经结束。这一项同时也是前面发送的所有内容的hash值,用来供服务器校验。
上面第一项的随机数,是整个握手阶段出现的第三个随机数,又称"pre-master key"。有了它以后,客户端和服务器就同时有了三个随机数,接着双方就用事先商定的对称加密算法,各自生成本次会话所用的同一把"会话密钥"。也就是说浏览器和服务器各自使用同一个对称加密算法,对三个相同的随机数进行加密,获得了,用来加密网页内容的 对称加密算法的秘钥。(注意:这里浏览器的三个随机数都是明文的,但是服务端获得的"pre-master key"是密文的,所以服务器需要使用非对称加密算法的私钥,来先解密获得"pre-master key"的明文,在来生成对称加密算法的秘钥。这样的目的是为了防止:"pre-master key"被窃听,因为发送明文会被窃听,但是发生的是非对称加密算法的加密过后的密文,因为窃听者不知道私钥,所以即使窃听了,也无法解密出其对应的明文。从而保证了最后生成的:用于加密网页内容的对称加密算法的秘钥的安全性!!!)
至于为什么一定要用三个随机数,来生成"会话密钥",dog250解释得很好:
"不管是客户端还是服务器,都需要随机数,这样生成的密钥才不会每次都一样。由于SSL协议中证书是静态的,因此十分有必要引入一种随机因素来保证协商出来的密钥的随机性。
对于RSA密钥交换算法来说,pre-master-key本身就是一个随机数,再加上hello消息中的随机,三个随机数通过一个密钥导出器最终导出一个对称密钥。
pre master的存在在于SSL协议不信任每个主机都能产生完全随机的随机数,如果随机数不随机,那么pre master secret就有可能被猜出来,那么仅适用pre master secret作为密钥就不合适了,因此必须引入新的随机因素,那么客户端和服务器加上pre master secret三个随机数一同生成的密钥就不容易被猜出了,一个伪随机可能完全不随机,可是是三个伪随机就十分接近随机了,每增加一个自由度,随机性增加的 可不是一。"
这里:其实如果 pre-master-key 和 浏览器生成的随机数都可能被猜出来,那么最后生成的对称加密算法的秘钥就是不安全的。因为三个随机数都可能被窃听到了。
此外,如果前一步,服务器要求客户端证书,客户端会在这一步发送证书及相关信息。
服务器的最后回应
服务器收到客户端的第三个随机数pre-master key之后,计算生成本次会话所用的对称加密算法的"会话密钥"。然后,向客户端最后发送下面信息。
编码改变通知,表示随后的信息都将用双方商定的对称加密算法和密钥进行加密。
服务器握手结束通知,表示服务器的握手阶段已经结束。这一项同时也是前面发送的所有内容的hash值,用来供客户端校验。
至此,整个握手阶段全部结束。接下来,客户端与服务器进入加密通信,就完全是使用普通的HTTP协议,只不过用"会话密钥"加密内容。

