大数跨境
0
0

计算机视觉"新"范式: Transformer

计算机视觉"新"范式: Transformer 极市平台
2020-10-16
1
导读:本文对Transformer在计算机视觉领域的应用进行了回顾与思考。
↑ 点击蓝字 关注极市平台

作者丨陀飞轮
来源丨Smarter
编辑丨极市平台

极市导读

 

近期,Transformer一改人们对其不适合计算机视觉视觉领域的印象,在几个工作所展现出来性能达CNN的SOTA。本文对Transformer在计算机视觉领域的应用进行了回顾与思考。>>加入极市CV技术交流群,走在计算机视觉的最前沿

自从Transformer出来以后,Transformer便开始在NLP领域一统江湖。而Transformer在CV领域反响平平,一度认为不适合CV领域,直到最近计算机视觉领域出来几篇Transformer文章,性能直逼CNN的SOTA,给予了计算机视觉领域新的想象空间。

本文不拘泥于Transformer原理和细节实现(知乎有很多优质的Transformer解析文章,感兴趣的可以看看),着重于Transformer对计算机视觉领域的革新。

首先简略回顾一下Transformer,然后介绍最近几篇计算机视觉领域的Transformer文章,其中ViT用于图像分类,DETRDeformable DETR用于目标检测。从这几篇可以看出,Transformer在计算机视觉领域的范式已经初具雏形,可以大致概括为:Embedding -> Transformer -> Head

一些有趣的点写在最后~~

Transformer

Transformer详解

The Illustrated Transformer
https://jalammar.github.io/illustrated-transformer/

打不开的可以关注一下Smarter公众号,回复"Transformer详解"获取文章

下面以机器翻译为例子,简略介绍Transformer结构。

1. Encoder-Decoder

Transformer结构可以表示为Encoder和Decoder两个部分

Encoder和Decoder主要由Self-Attention和Feed-Forward Network两个组件构成,Self-Attention由Scaled Dot-Product Attention和Multi-Head Attention两个组件构成。

Scaled Dot-Product Attention公式:

Multi-Head Attention公式:

Feed-Forward Network公式:

2. Positional Encoding

如图所示,由于机器翻译任务跟输入单词的顺序有关,Transformer在编码输入单词的嵌入向量时引入了positional encoding,这样Transformer就能够区分出输入单词的位置了。

引入positional encoding的公式为:

是位置,  是维数,  是输入单词的嵌入向量维度。

3. Self-Attention

3.1 Scaled Dot-Product Attention

在Scaled Dot-Product Attention中,每个输入单词的嵌入向量分别通过3个矩阵 和 来分别得到Query向量( ),Key向量( )和Value向量( )。

如图所示,Scaled Dot-Product Attention的计算过程可以分成7个步骤:

  1. 每个输入单词转化成嵌入向量。
  2. 根据嵌入向量得到 三个向量。
  3. 通过向量计算 : 。
  4. 对  进行归一化,即除以
  5. 通过 激活函数计算
  6. 点乘Value值 ,得到每个输入向量的评分
  7. 所有输入向量的评分 之和为

上述步骤的矩阵形式可以表示成:

与Scaled Dot-Product Attention公式一致。

3.2 Multi-Head Attention

如图所示,Multi-Head Attention相当于h个不同Scaled Dot-Product Attention的集成,以h=8为例子,Multi-Head Attention步骤如下:

  1. 将数据  分别输入到8个不同的Scaled Dot-Product Attention中,得到8个加权后的特征矩阵 
  2. 将8个  按列拼成一个大的特征矩阵。
  3. 特征矩阵经过一层全连接得到输出 

Scaled Dot-Product Attention和Multi-Head Attention都加入了short-cut机制。

ViT

ViT将Transformer巧妙的应用于图像分类任务,更少计算量下性能跟SOTA相当。

Vision Transformer(ViT)将输入图片拆分成16x16个patches,每个patch做一次线性变换降维同时嵌入位置信息,然后送入Transformer,避免了像素级attention的运算。类似BERT[class]标记位的设置,ViT在Transformer输入序列前增加了一个额外可学习的[class]标记位,并且该位置的Transformer Encoder输出作为图像特征。

其中 为原图像分辨率, 为每个图像patch的分辨率。 为Transformer输入序列的长度。

ViT舍弃了CNN的归纳偏好问题,更加有利于在超大规模数据上学习知识,即大规模训练优归纳偏好,在众多图像分类任务上直逼SOTA。

DETR

DETR使用set loss function作为监督信号来进行端到端训练,然后同时预测所有目标,其中set loss function使用bipartite matching算法将pred目标和gt目标匹配起来。直接将目标检测任务看成set prediction问题,使训练过程变的简洁,并且避免了anchor、NMS等复杂处理。

DETR主要有两个部分:architecture和set prediction loss。

1. Architecture

DETR先用CNN将输入图像embedding成一个二维表征,然后将二维表征转换成一维表征并结合positional encoding一起送入encoder,decoder将少量固定数量的已学习的object queries(可以理解为positional embeddings)和encoder的输出作为输入。最后将decoder得到的每个output embdding传递到一个共享的前馈网络(FFN),该网络可以预测一个检测结果(包括类和边框)或着“没有目标”的类。

1.1 Transformer

1.1.1 Encoder

将Backbone输出的feature map转换成一维表征,得到 特征图,然后结合positional encoding作为Encoder的输入。每个Encoder都由Multi-Head Self-Attention和FFN组成。

和Transformer Encoder不同的是,因为Encoder具有位置不变性,DETR将positional encoding添加到每一个Multi-Head Self-Attention中,来保证目标检测的位置敏感性。

1.1.2 Decoder

因为Decoder也具有位置不变性,Decoder的 个object query(可以理解为学习不同object的positional embedding)必须是不同,以便产生不同的结果,并且同时把它们添加到每一个Multi-Head Attention中。 个object queries通过Decoder转换成一个output embedding,然后output embedding通过FFN独立解码出 个预测结果,包含box和class。对输入embedding同时使用Self-Attention和Encoder-Decoder Attention,模型可以利用目标的相互关系来进行全局推理。

和Transformer Decoder不同的是,DETR的每个Decoder并行输出 个对象,Transformer Decoder使用的是自回归模型,串行输出 个对象,每次只能预测一个输出序列的一个元素。

1.1.3 FFN

FFN由3层perceptron和一层linear projection组成。FFN预测出box的归一化中心坐标、长、宽和class。

DETR预测的是固定数量的 个box的集合,并且 通常比实际目标数要大的多,所以使用一个额外的空类来表示预测得到的box不存在目标。

2. Set prediction loss

DETR模型训练的主要困难是如何根据gt衡量预测结果(类别、位置、数量)。DETR提出的loss函数可以产生pred和gt的最优双边匹配(确定pred和gt的一对一关系),然后优化loss。

将  表示为gt的集合, 表示为 个预测结果的集合。假设 大于图片目标数,  可以认为是用空类(无目标)填充的大小为 的集合。搜索两个集合 个元素 的不同排列顺序,使得loss尽可能的小的排列顺序即为二分图最大匹配(Bipartite Matching),公式如下:

其中 表示pred和gt关于 元素 的匹配loss。其中二分图匹配通过匈牙利算法(Hungarian algorithm)得到。

匹配loss同时考虑了pred class和pred box的准确性。每个gt的元素 可以看成 表示class label(可能是空类)  表示gt box,将元素 二分图匹配指定的pred class表示为  ,pred box表示为

第一步先找到一对一匹配的pred和gt,第二步再计算hungarian loss。

hungarian loss公式如下:

其中 结合了L1 loss和generalized IoU loss,公式如下:

ViT和DETR两篇文章的实验和可视化分析很有启发性,感兴趣的可以仔细看看~~

Deformable DETR

从DETR看,还不足以赶上CNN,因为训练时间太久了,Deformable DETR的出现,让我对Transformer有了新的期待。

Deformable DETR将DETR中的attention替换成Deformable Attention,使DETR范式的检测器更加高效,收敛速度加快10倍。

Deformable DETR提出的Deformable Attention可以可以缓解DETR的收敛速度慢和复杂度高的问题。同时结合了deformable convolution的稀疏空间采样能力和transformer的关系建模能力。Deformable Attention可以考虑小的采样位置集作为一个pre-filter突出所有feature map的关键特征,并且可以自然地扩展到融合多尺度特征,并且Multi-scale Deformable Attention本身就可以在多尺度特征图之间进行交换信息,不需要FPN操作。

1. Deformable Attention Module

给定一个query元素(如输出句子中的目标词)和一组key元素(如输入句子的源词),Multi-Head Attention能够根据query-key pairs的相关性自适应的聚合key的信息。为了让模型关注来自不同表示子空间和不同位置的信息,对multi-head的信息进行加权聚合。其中 表示query元素(特征表示为 ), 表示key元素(特征表示为 ), 是特征维度, 和  分别为 的集合。

那么Transformer 的 Multi-Head Attention公式表示为:

其中 指定attention head, 是可学习参数,注意力权重 并且归一化 ,其中 是可学习参数。为了能够分辨不同空间位置, 通常会引入positional embedding。

对于DETR中的Transformer Encoder,query和key元素都是feature map中的像素。

DETR 的 Multi-Head Attention 公式表示为:

其中

DETR主要有两个问题:需要更多的训练时间来收敛,对小目标的检测性能相对较差。本质上是因为Transfomer的Multi-Head Attention会对输入图片的所有空间位置进行计算。而Deformable DETR的Deformable Attention只关注参考点周围的一小部分关键采样点,为每个query分配少量固定数量的key,可以缓解收敛性和输入分辨率受限制的问题。

给定一个输入feature map , 表示为query元素(特征表示为),二维参考点表示为 ,Deformable DETR 的 Deformable Attention公式表示为:

其中 指定attention head, 指定采样的key, 表示采样key的总数( )。 分别表示第 个采样点在第 个attention head的采样偏移量和注意力权重。注意力权重 在[0,1]的范围内,归一化

【声明】内容源于网络
0
0
极市平台
为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞赛实践等丰富的内容与服务。
内容 8155
粉丝 0
极市平台 为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞赛实践等丰富的内容与服务。
总阅读5.7k
粉丝0
内容8.2k