
极市导读
本文总结了2020年Papers with Code 中最顶流的论文,代码和benchmark。 >>加入极市CV技术交流群,走在计算机视觉的最前沿
2020顶流论文
-
EfficientDet: Scalable and Efficient Object Detection — Tan et al https://paperswithcode.com/paper/efficientdet-scalable-and-efficient-object -
Fixing the train-test resolution discrepancy — Touvron et al https://paperswithcode.com/paper/fixing-the-train-test-resolution-discrepancy-2 -
ResNeSt: Split-Attention Networks — Zhang et al https://paperswithcode.com/paper/resnest-split-attention-networks -
Big Transfer (BiT) — Kolesnikov et al https://paperswithcode.com/paper/large-scale-learning-of-general-visual -
Object-Contextual Representations for Semantic Segmentation — Yuan et al https://paperswithcode.com/paper/object-contextual-representations-for -
Self-training with Noisy Student improves ImageNet classification — Xie et al https://paperswithcode.com/paper/self-training-with-noisy-student-improves -
YOLOv4: Optimal Speed and Accuracy of Object Detection — Bochkovskiy et al https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object -
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale — Dosovitskiy et al https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1 -
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer — Raffel et al https://paperswithcode.com/paper/exploring-the-limits-of-transfer-learning -
Hierarchical Multi-Scale Attention for Semantic Segmentation — Tao et al https://paperswithcode.com/paper/hierarchical-multi-scale-attention-for
2020顶流代码库
-
Transformers — Hugging Face — https://github.com/huggingface/transformers -
PyTorch Image Models — Ross Wightman — https://github.com/rwightman/pytorch-image-models -
Detectron2 — FAIR — https://github.com/facebookresearch/detectron2 -
InsightFace — DeepInsight — https://github.com/deepinsight/insightface -
Imgclsmob — osmr — https://github.com/osmr/imgclsmob -
DarkNet — pjreddie — https://github.com/pjreddie/darknet -
PyTorchGAN — Erik Linder-Norén — https://github.com/eriklindernoren/PyTorch-GAN -
MMDetection — OpenMMLab — https://github.com/open-mmlab/mmdetection -
FairSeq — PyTorch — https://github.com/pytorch/fairseq -
Gluon CV — DMLC — https://github.com/dmlc/gluon-cv
2020顶流Benchmarks
-
ImageNet — Image Classification — https://paperswithcode.com/sota/image-classification-on-imagenet -
COCO — Object Detection / Instance Segmentation — https://paperswithcode.com/sota/object-detection-on-coco -
Cityscapes — Semantic Segmentation — https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes -
CIFAR-10 — Image Classification — https://paperswithcode.com/sota/image-classification-on-cifar-10 -
CIFAR-100 — Image Classification — https://paperswithcode.com/sota/image-classification-on-cifar-100 -
PASCAL VOC 2012 — Semantic Segmentation — https://paperswithcode.com/sota/semantic-segmentation-on-pascal-voc-2012 -
MPII Human Pose — Pose Estimation — https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose -
Market-1501 — Person Re-Identification — https://paperswithcode.com/sota/person-re-identification-on-market-1501 -
MNIST — Image Classification — https://paperswithcode.com/sota/image-classification-on-mnist -
Human 3.6M — Human Pose Estimation -https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose
推荐阅读

