大数跨境
0
0

实践教程|基于OpenVINO在C++中部署YOLOv5-Seg实例分割模型

实践教程|基于OpenVINO在C++中部署YOLOv5-Seg实例分割模型 极市平台
2023-02-15
0
↑ 点击蓝字 关注极市平台
作者丨英特尔物联网行业创新大使 王一凡
编辑丨极市平台

极市导读

 

YOLOv5兼具速度和精度,工程化做的特别好,Git clone到本地即可在自己的数据集上实现目标检测任务的训练和推理,在产业界中应用广泛。本文主要介绍在C++中使用OpenVINO工具包部署YOLOv5-Seg模型的主要步骤。>>加入极市CV技术交流群,走在计算机视觉的最前沿

目录

1.1 配置OpenVINO C++开发环境
1.2 下载并转换YOLOv5预训练模型
1.3 使用OpenVINO Runtime C++ API编写推理程序
1.3.1 采集图像&图像解码
1.3.2 YOLOv5-Seg模型的图像预处理
1.3.3 执行AI推理计算
1.3.4 推理结果进行后处理
1.4 总结

YOLOv5兼具速度和精度,工程化做的特别好,Git clone到本地即可在自己的数据集上实现目标检测任务的训练和推理,在产业界中应用广泛。开源社区对YOLOv5支持实例分割的呼声高涨,YOLOv5在v7.0中正式官宣支持实例分割。

本文主要介绍在C++中使用OpenVINO工具包部署YOLOv5-Seg模型,主要步骤有:

  1. 配置OpenVINO C++开发环境
  2. 下载并转换YOLOv5-Seg预训练模型
  3. 使用OpenVINO Runtime C++ API编写推理程序

下面,本文将依次详述

1.1 配置OpenVINO C++开发环境

配置OpenVINO C++开发环境的详细步骤,请参考《在Windows中基于Visual Studio配置OpenVINO C++开发环境》

1.2 下载并转换YOLOv5预训练模型

下载并转换YOLOv5-seg预训练模型的详细步骤,请参考:https://mp.weixin.qq.com/s/K3wP5YLAU4p5jsdiMYjuMg,本文所使用的OpenVINO是2022.3 LTS版。

首先,运行命令获得 yolov5s-seg ONNX 格式模型:yolov5s-seg.onnx:

python export.py --weights yolov5s-seg.pt --include onnx

然后运行命令获得yolov5s-seg IR格式模型:yolov5s-seg.xml和yolov5s-seg.bin,如下图所示

mo -m yolov5s-seg.onnx --compress_to_fp16
图 1-1  yolov5-seg ONNX格式和IR格式模型

1.3 使用OpenVINO Runtime C++ API编写推理程序

一个端到端的AI推理程序,主要包含五个典型的处理流程:

  1. 采集图像&图像解码
  2. 图像数据预处理
  3. AI推理计算
  4. 对推理结果进行后处理
  5. 将处理后的结果集成到业务流程
图 1-2  端到端的AI推理程序处理流程

1.3.1 采集图像&图像解码

OpenCV提供imread()函数将图像文件载入内存,

Mat cv::imread (const String &filename, int flags=IMREAD_COLOR)

若是从视频流(例如,视频文件、网络摄像头、3D摄像头(Realsense)等)中,一帧一帧读取图像数据到内存,则使用cv::VideoCapture类,对应范例代码请参考OpenCV官方范例代码:https://github.com/opencv/opencv/tree/4.x/samples/cpp。

图 1-3 从视频流读取图像帧范例

1.3.2 YOLOv5-Seg模型的图像预处理

YOLOv5-Seg模型构架是在YOLOv5模型构架基础上,增加了一个叫“Proto”的小型卷积神经网络,用于输出检测对象掩码(Mask),如下图所示:

图 1-4  YOLOv5-Seg模型输出的代码定义

详细参看:https://github.com/ultralytics/yolov5/blob/master/models/yolo.py#L92

由此可知,YOLOv5-Seg模型对数据预处理的要求跟YOLOv5模型一模一样,YOLOv5-Seg模型的预处理代码可以复用YOLOv5模型的C++预处理代码。

另外,从代码可以看出YOLOv5-Seg模型的输出有两个张量,一个张量输出检测结果,一个张量输出proto,其形状可以用Netron打开yolov5-seg.onnx查知,如下图所示。

图 1-5  YOLOv5-Seg模型的输入和输出

“output0”是检测输出,第一个维度表示batch size,第二个维度表示25200条输出,第三个维度表示有117个字段,其中前85个字段(0~84)表示:cx、cy、w、h、confidence和80个类别分数,后32个字段与”output1”做矩阵乘法,可以获得尺寸为160x160的检测目标的掩码(mask),如下图所示。

图 1-6  检测目标的掩码

1.3.3 执行AI推理计算

基于OpenVINO Runtime C++ API实现AI推理计算主要有两种方式:一种是同步推理方式,一种是异步推理方式,本文主要介绍同步推理方式。

主要步骤有:

  1. 初始化Core类:ov::Core core;
  2. 编译模型:core.compile_model()
  3. 创建推理请求infer_request:compiled_model.create_infer_request()
  4. 读取图像数据并做预处理:letterbox()
  5. 将预处理后的blob数据传入模型输入节点:infer_request.set_input_tensor()
  6. 调用infer()方法执行推理计算:infer_request.infer()
  7. 获得推理结果:infer_request.get_output_tensor()

基于OpenVINO Runtime C++API的同步推理代码如下所示:

    // -------- Step 1. Initialize OpenVINO Runtime Core --------
    ov::Core core;
    // -------- Step 2. Compile the Model --------
    auto compiled_model = core.compile_model(model_file, "GPU.1"); //GPU.1 is dGPU A770
    // -------- Step 3. Create an Inference Request --------
    ov::InferRequest infer_request = compiled_model.create_infer_request();
    // -------- Step 4. Read a picture file and do the preprocess --------
    cv::Mat img = cv::imread(image_file); //Load a picture into memory
    std::vector<float> paddings(3);       //scale, half_h, half_w
    cv::Mat resized_img = letterbox(img, paddings); //resize to (640,640) by letterbox
    // BGR->RGB, u8(0-255)->f32(0.0-1.0), HWC->NCHW
    cv::Mat blob = cv::dnn::blobFromImage(resized_img, 1 / 255.0, cv::Size(640, 640), cv::Scalar(0, 0, 0), true);
    // -------- Step 5. Feed the blob into the input node of YOLOv5 -------
    // Get input port for model with one input
    auto input_port = compiled_model.input();
    // Create tensor from external memory
    ov::Tensor input_tensor(input_port.get_element_type(), input_port.get_shape(), blob.ptr(0));
    // Set input tensor for model with one input
    infer_request.set_input_tensor(input_tensor);
    // -------- Step 6. Start inference --------
    infer_request.infer();
    // -------- Step 7. Get the inference result --------
    auto detect = infer_request.get_output_tensor(0);
    auto detect_shape = detect.get_shape();
    std::cout << "The shape of Detection tensor:"<< detect_shape << std::endl;
    auto proto = infer_request.get_output_tensor(1);
    auto proto_shape = proto.get_shape();
std::cout << "The shape of Proto tensor:" << proto_shape << std::endl;

1.3.4 推理结果进行后处理

后处理工作主要是从”detect ”输出张量中拆解出检测框的位置和类别信息,并用cv::dnn::NMSBoxes()过滤掉多于的检测框;从”detect ”输出张量的后32个字段与”proto”输出张量做矩阵乘法,获得每个检测目标的形状为160x160的掩码输出,最后将160x160的掩码映射回原始图像完成所有后处理工作。

完整的代码实现,请下载:https://gitee.com/ppov-nuc/yolov5_infer/blob/main/yolov5seg_openvino_dGPU.cpp

1.4 总结

配置OpenVINO C++开发环境后,可以直接编译运行yolov5seg_openvino_dGPU.cpp,结果如下图所示。使用OpenVINO Runtime C++ API函数开发YOLOv5推理程序,简单方便,并可以任意部署在英特尔CPU、集成显卡和独立显卡上。

图 1-7 运行结果

公众号后台回复“数据集”获取200+数据集资源汇总

极市干货

技术干货损失函数技术总结及Pytorch使用示例深度学习有哪些trick?目标检测正负样本区分策略和平衡策略总结

实操教程GPU多卡并行训练总结(以pytorch为例)CUDA WarpReduce 学习笔记卷积神经网络压缩方法总结

极市原创作者激励计划 #


极市平台深耕CV开发者领域近5年,拥有一大批优质CV开发者受众,覆盖微信、知乎、B站、微博等多个渠道。通过极市平台,您的文章的观点和看法能分享至更多CV开发者,既能体现文章的价值,又能让文章在视觉圈内得到更大程度上的推广,并且极市还将给予优质的作者可观的稿酬!

我们欢迎领域内的各位来进行投稿或者是宣传自己/团队的工作,让知识成为最为流通的干货!

对于优质内容开发者,极市可推荐至国内优秀出版社合作出书,同时为开发者引荐行业大牛,组织个人分享交流会,推荐名企就业机会等。


投稿须知:
1.作者保证投稿作品为自己的原创作品。
2.极市平台尊重原作者署名权,并支付相应稿费。文章发布后,版权仍属于原作者。
3.原作者可以将文章发在其他平台的个人账号,但需要在文章顶部标明首发于极市平台

投稿方式:
添加小编微信Fengcall(微信号:fengcall19),备注:姓名-投稿

点击阅读原文进入CV社区

收获更多技术干货

【声明】内容源于网络
0
0
极市平台
为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞赛实践等丰富的内容与服务。
内容 8155
粉丝 0
极市平台 为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞赛实践等丰富的内容与服务。
总阅读3.2k
粉丝0
内容8.2k