
极市导读
TensorFlow 2.10 已发布,还没有更新的小伙伴现在可以更新了。 >>加入极市CV技术交流群,走在计算机视觉的最前沿
import tensorflow as tfembedding = tf.keras.layers.Embedding(input_dim=10,output_dim=3,mask_zero=True) # Infer a correct padding mask.# Instantiate a Keras multi-head attention (MHA) layer,# a layer normalization layer, and an `Add` layer object.mha = tf.keras.layers.MultiHeadAttention(key_dim=4, num_heads=1)layernorm = tf.keras.layers.LayerNormalization()add = tf.keras.layers.Add()# Test input.x = tf.constant([[1, 2, 3, 4, 5, 0, 0, 0, 0],[1, 2, 1, 0, 0, 0, 0, 0, 0]])# The embedding layer sets the mask.x = embedding(x)# The MHA layer uses and propagates the mask.a = mha(query=x, key=x, value=x, use_causal_mask=True)x = add([x, a]) # The `Add` layer propagates the mask.x = layernorm(x)# The mask made it through all layers.print(x._keras_mask)
> tf.Tensor(> [[ True True True True True False False False False]> [ True True True False False False False False False]], shape=(2, > 9), dtype=bool)
公众号后台回复“医学影像”获取医学影像综述~

# CV技术社群邀请函 #
备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳)
即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群
极市&深大CV技术交流群已创建,欢迎深大校友加入,在群内自由交流学术心得,分享学术讯息,共建良好的技术交流氛围。
“
点击阅读原文进入CV社区
收获更多技术干货

