大数跨境
0
0

Hinton坐阵!斯坦福CS25 Transformer专题讲座更新:多位AI大佬齐聚

Hinton坐阵!斯坦福CS25 Transformer专题讲座更新:多位AI大佬齐聚 极市平台
2022-08-25
0
↑ 点击蓝字 关注极市平台

来源丨新智元
编辑丨极市平台

极市导读

 

斯坦福大牛Christopher Manning开设的Transformer联合讲座课程更新啦!这期请来的是Hinton大神。>>加入极市CV技术交流群,走在计算机视觉的最前沿

图灵奖得主、深度学习教父Geoffrey Hinton在斯坦福线上开课啦?
 
本课程是斯坦福大学计算机科学家Christopher Manning教授开设的CS25: Transformers United联合讲座课程。
 
课程邀请了学术界和产业界关于Transformer架构的知名学者和工程师主讲,来自谷歌、OpenAI、牛津大学、Meta AI、DeepMind等学术机构和企业。
 
 
本讲座共分10期,随授课内容推进而陆续在线更新视频。(第一期为总览介绍)
 
最近更新的是最后一期,主讲人是大名鼎鼎的人工智能领域先驱人物、图灵奖得主Geoffrey Hinton。
 
讲座链接就放在这里啦,有兴趣的童鞋可以看看~
https://www.youtube.com/playlist?list=PLoROMvodv4rNiJRchCzutFw5ItR_Z27CM
 
 
这期课程中,Hinton提出了一个关于表征的新想法,名为GLOM的想象系统,由几个不同团队研究成果的结合。
 
其中包括Transformer、神经场、对比性表征学习等内容。GLOM要解决的问题是,一个具有固定架构的神经网络如何能将一幅图像解析成一个「部分-整体」的层次结构,且结果对每一幅图像都是不同的?
 
GLOM背后的想法很简单,就是用相同矢量的岛屿来表示解析树中的节点。在这期讲座中,将讨论这个想法的影响。如果GLOM能够发挥作用,那么当其用于视觉或语言时,应该能极大地改善由类似transformer系统产生的表示的可解释性。
 
 
Hinton在这期讲座中将最近神经网络领域的三个重要成果融合在了一起,即Transformer、通过对比协议的非监督学习的视觉表示、以及使用神经野图像的生成模型。
 
 
Hinton表示,他将这三项成果组合在一起,搞出一个新的图像视觉系统,名叫GLOM, 比现有深度网络更接近人类认知。
 
Geoffrey Hinton是多伦多大学的名誉教授,深度学习界的领军人物,是引入反向传播算法的先驱研究者之一,并与他的研究小组一起,为推动神经网络领域的发展做出了重大突破和贡献。
 
 
Hinton荣誉等身,曾获David E. Rumelhart奖、IJCAI卓越研究奖、Killam工程奖、IEEE Frank Rosenblatt奖章、NSERC Herzberg金奖、IEEE James Clerk Maxwell金奖、NEC C&C奖、BBVA奖、本田奖和图灵奖。
 
说了那么多,先来看看这十期课程都有哪些干货吧~
 
1.Introduction to Transformers(引入课程)
 
主讲人: Div Grag,Chetanya Rastogi,Advay Pal
 
 
推荐阅读:Attention Is All You Need
论文地址:https://arxiv.org/abs/1706.03762
 
 
2.Transformers in Language: GPT-3, Codex
 
主讲人:Mark Chen (OpenAI)
 
这节课的主讲人Mark Chen是来自OpenAI的一名研究科学家,负责管理OpenAI的算法团队。
 
他的研究兴趣包括生成建模和表示学习,尤其是在图像和多模态领域。Mark毕业于麻省理工学院,值得一提的是,Mark还是美国计算机奥赛的教练。
 
 
本节课程回顾了神经语言建模的最新进展,并讨论了生成文本(generating text)和解决下游任务之间的联系,并探讨OpenAI开发GPT模型的过程。接下来,我们将看到如何使用相同的方法在图像、文本到图像和代码等其他领域生成生成模型和强表示。课程最后,我们将深入研究最近发布的代码生成模型 Codex。
 
3.Transformers in Vision: Tackling problems in Computer Vision
 
主讲人:Lucas Beyer (Google Research Brain Team)
 
 
推荐阅读:An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
论文地址:https://arxiv.org/abs/2010.11929
 
4. Decision Transformer: Reinforcement Learning via Sequence Modeling
 
主讲人:Aditya Grover
 
 
推荐阅读:Pretrained Transformers as Universal Computation Engines
论文地址:https://arxiv.org/abs/2103.05247
 
5. Mixture of Experts (MoE) paradigm and the Switch Transformer
 
主讲人:Barret Zoph (Google Brain) ,Irwan Bello,Liam Fedus
 
 
6.Deep Mind's Perceiver and Perceiver IO: new data family architecture
 
主讲人:Andrew Jaegle (DeepMind)
 
 
7.Self Attention and Non-parametric transformers (NPTs)
 
主讲人:Aidan Gomez (University of Oxford)
 
 
8.Transformer Circuits, Induction Heads, In-Context Learning
 
主讲人:Chris Olah (Anthropic AI)
 
 
9.Audio Research: Transformers for Applications in Audio, Speech and Music
 
主讲人:Prateek Verma (Stanford)
 

参考资料:
https://twitter.com/DivGarg9/status/1545541542235975682?s=20&t=_Ed9dpjD9Qpx4svpMNDIKQ&fbclid=IwAR2tnSQROnkOQl15aa6nkfNFaJdrnZQHDbidooDaQRJALlWsYMiQU_37dn4
https://web.stanford.edu/class/cs25/


公众号后台回复“ECCV2022”获取论文分类合集下载~

△点击卡片关注极市平台,获取最新CV干货


极市干货
算法竞赛:1000W奖池,AI算法等你来战!粤港澳大湾区(黄埔)国际算法算例大赛正式开赛!
技术综述防止模型过拟合的方法汇总浅析深度学习在图像处理中的应用趋势及常见技巧
极视角动态:极视角与惠普签署战略合作协议,共拓智慧工业市场极智产品融合|极视角罗韵解读「行业+AI」融合创新的实操手册


点击阅读原文进入CV社区

收获更多技术干货

【声明】内容源于网络
0
0
极市平台
为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞赛实践等丰富的内容与服务。
内容 8155
粉丝 0
极市平台 为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞赛实践等丰富的内容与服务。
总阅读8.7k
粉丝0
内容8.2k