大数跨境
0
0

AI顶会审稿人竟是本科生?女物理学家发推吐槽,圈内大佬纷纷点赞

AI顶会审稿人竟是本科生?女物理学家发推吐槽,圈内大佬纷纷点赞 极市平台
2023-01-14
2
↑ 点击蓝字 关注极市平台
来源丨新智元

极市导读

 

最近,一位来自洛桑联邦理工学院(École polytechnique fédérale de Lausanne (EPFL))的女物理学家Lenka Zdeborova在推特上吐槽顶会的审稿人筛选机制,引发了众多学术圈大佬共鸣。>>加入极市CV技术交流群,走在计算机视觉的最前沿

你以为的学术顶级会议期刊审稿人,都是来自各自领域的大牛?
事实上,你辛辛苦苦几个月做的研究论文,审稿人很有可能是一群本科生或研究生?
最近,来自洛桑联邦理工学院(École polytechnique fédérale de Lausanne (EPFL))的女物理学家Lenka Zdeborova就在推特上吐槽顶会的审稿人机制。

研究生院的申请人就已经有顶会审稿经验?而且数量还不少。

我正在审查EPFL计算机科学研究生院的申请,我看到许多申请人都有担任顶级ML会议审稿人的经验,我想知道如果同行评议的很大一部分是由本科生完成的,我们为什么还要费心去进行同行评议!?


Lenka Zdeborová是EPFL的物理学和计算机科学教授,她领导计算机学院的统计物理学科。

她是Journal of Physics A、Physical Review E、Physical Review X、SIMODS、Machine Learning: Science and Technology、Information and Inference等众多学术期刊的编委。

Lenka擅长的领域是将统计物理学的概念(例如高级平均场方法、复制方法和相关消息传递算法)应用于机器学习、信号处理、推理和优化中的问题。

一些圈内人士也表示赞同,研究生一年级的学生竟然已经可以在顶会审稿,而且没有人觉得这是个问题。

你以为的审稿人是这些学界大佬,事实上其实是他们带的本科生或研究生......

知乎答主「卡卡卡卡比」认为这种现象已经是司空见惯了,从ICLR到AAAI,审稿人的水平参差不齐,保不齐你的paper就落到了某个本科生手里。

抱怨完审稿人水平之后,关键还是要思考如何能够写出让大家make sense并且能兼顾大多人审稿taste的工作。

来源:卡卡卡卡比

另一位答主「歇斯底里i」也认为,审稿人很少懂你的领域,所以你要把论文的结果清晰明了地呈现出来,让别人看不懂就是你的问题了。

来源:歇斯底里i

顶会审稿到底怎么审


那么顶会审稿究竟怎么审?

同行评审(Peer-review)是现代科学的基石,几乎所有机器学习 (ML) 顶会(如NeurIPS、ICML、AAAI)都依靠它来决定提交的论文是否与社区相关,以及原创性是否足以在那里发表。

不幸的是,随着过去十年提交文章数量呈指数级增长,审稿质量也以同样快的速度下降。

如果您曾经向其中一个会议提交过论文,在为您认为是一个绝妙的想法而努力工作了几个月之后,您得到的是糟糕的、无用的,而且(更糟糕的是 ) 具有讽刺意味的评论意味着你将不得不重新经历一次提交过程,而没有任何关于你的论文存在什么问题的提示。

图灵奖获得者Geoffrey Hinton在2018年接受 Wired 杂志采访时给出了造成这种情况的原因之一:

现在如果你提交的论文有一个全新的想法,它根本就没有机会被接受,因为这些年轻的初级审稿人根本无法理解。

或者它会遇到一位高级审稿人,他审阅了太多的论文,第一次看并不理解,并认为它一定是胡说八道。我认为这真的很糟糕。


知乎答主电光幻影炼金术对审稿被拒做了个假设,如果你发现你的论文因为一些概念问题审稿人没理解被给了低分,有三种可能:

(1)审稿人是个本科生/低年级博士生,他看不懂这些概念。

(2)审稿人是个超级大佬,他很重视基础概念问题,并且他已经不做这个领域多年。

(3)审稿人是个超级大佬,但他没有时间,他交给了他的低年级博士学生来审稿。所以说,学术圈就是一个轮回,本科生的表现和超级大佬最像。


  • 你以为理想中的审稿人:

周一打开论文,看看摘要,速读一遍,评估一下novelty。周二细细看方法,挑挑毛病。周三看一下实验,看看baseline的相关论文,查对实验细节。周四开始写审稿意见,决定审稿分数。周五补充一些审稿意见,提交审稿分数。

  • 实际审稿人:

周一上午八点打开审稿论文,读了读摘要,感觉没什么novelty。看了看图片,感觉不看正文看不明白。翻到后面看了看实验数字,感觉提升也不大。看看方法,四页好多看不完。下午还有事,给个5分走人吧。周一上午十一点半结束审稿工作。

我们再来看看ICML2022的审稿规则:


  • 选题意义:

这部分评审的目的是向MR(Meta-reviewer)和作者展示您对这篇论文的理解程度以及您对这篇论文的看法。

  • 写作创新性、相关性、重要性:

它们与我们的社区相关吗?它们是新的吗?如果答案是否定的(或部分否,例如,引用早期论文中的精确结果),则需要一个精确的理由,以便作者知道如何修复论文。

  • 健全性:

理想情况下,一篇论文提出的主张应该得到理论论据或实验结果的充分支持。

  • 写作质量:

这篇论文是否组织良好并且写得很清楚?它是否很好地解释了新颖性和结果?该论文是否包含支持其声明所需的足够信息?

  • 参考文献:

这篇论文是否被恰当地置于当代文学中?如果没有,请具体说明缺少的内容。请注意,由于论文有页数限制,因此通常需要判断是否应提及结果。

而这些属于第一阶段审稿人的审核标准,符合审核标准的则可以进入第二阶段。

通过第一阶段的论文,会再经过元审稿人(MR)、项目主席过目,之后还会有额外的审稿人来确保论文审核质量。


而为什么现在的顶会审稿人的水平参差不齐,甚至冒出了一群本科生和研究生,原因主要在于行业发展太快,投稿量的增加速度远高于合格审稿人的培养速度。


这不仅导致有能力审稿的人占比少了,而且有能力的审稿的人对每篇文章能投入的时间也少了。


参考资料:

https://towardsdatascience.com/reviewing-for-machine-learning-conferences-explained-f73bc037babc

https://twitter.com/zdeborova/status/1612841482192388098

https://www.zhihu.com/question/461564257/answer/1908243034、


公众号后台回复“CNN综述”获取67页综述深度卷积神经网络架构

极市干货

技术干货损失函数技术总结及Pytorch使用示例深度学习有哪些trick?目标检测正负样本区分策略和平衡策略总结

实操教程GPU多卡并行训练总结(以pytorch为例)CUDA WarpReduce 学习笔记卷积神经网络压缩方法总结

极市原创作者激励计划 #


极市平台深耕CV开发者领域近5年,拥有一大批优质CV开发者受众,覆盖微信、知乎、B站、微博等多个渠道。通过极市平台,您的文章的观点和看法能分享至更多CV开发者,既能体现文章的价值,又能让文章在视觉圈内得到更大程度上的推广,并且极市还将给予优质的作者可观的稿酬!

我们欢迎领域内的各位来进行投稿或者是宣传自己/团队的工作,让知识成为最为流通的干货!

对于优质内容开发者,极市可推荐至国内优秀出版社合作出书,同时为开发者引荐行业大牛,组织个人分享交流会,推荐名企就业机会等。


投稿须知:
1.作者保证投稿作品为自己的原创作品。
2.极市平台尊重原作者署名权,并支付相应稿费。文章发布后,版权仍属于原作者。
3.原作者可以将文章发在其他平台的个人账号,但需要在文章顶部标明首发于极市平台

投稿方式:
添加小编微信Fengcall(微信号:fengcall19),备注:姓名-投稿

点击阅读原文进入CV社区

收获更多技术干货

【声明】内容源于网络
0
0
极市平台
为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞赛实践等丰富的内容与服务。
内容 8155
粉丝 0
极市平台 为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞赛实践等丰富的内容与服务。
总阅读7.6k
粉丝0
内容8.2k