
极市导读
本文先从图像特征开始介绍,后分点阐述特征子和描述子的相关分类及特点,最后以图像展示了特征匹配的关系,完整的叙述了整个建模过程中特征点检测与匹配的知识。 >>加入极市CV技术交流群,走在计算机视觉的最前沿
一、图像特征介绍
1、图像特征点的应用
-
相机标定:棋盘格角点阴影格式固定,不同视角检测到点可以得到匹配结果,标定相机内参 -
图像拼接:不同视角匹配恢复相机姿态 -
稠密重建:间接使用特征点作为种子点扩散匹配得到稠密点云 -
场景理解:词袋方法,特征点为中心生成关键词袋(关键特征)进行场景识别
2、图像特征点的检测方法
-
人工设计检测算法:sift、surf、orb、fast、hog -
基于深度学习的方法:人脸关键点检测、3D match点云匹配 -
场景中的人工标记点:影视场景背景简单的标记,特殊二维码设计(快速,精度低)
3、图像特征点的基本要求
-
差异性:视觉上场景上比较显著点,灰度变化明显,边缘点等 -
重复性:同一个特征在不同视角中重复出现,旋转、光度、尺度不变性
二、特征检测子
1、Harris 角点检测(早期,原理简单,视频跟踪,快速检测)
梦寐mayshine:角点检测(2) - harris算子 - 理论与Python代码
https://zhuanlan.zhihu.com/p/90393907
-
动机:特征点具有局部差异性 -
以每个点为中心取一个窗口,例如,5×5/7×7的像素,描述特征点周围环境 -
此点具有差异性->窗口往任意方向移动,则周围环境变化较大->具有局部差异性 -
最小二乘线性系统 -
加和符号:表示窗口内每个像素 -
w:表示权重,权值1或者以点为中心的高斯权重(离点越近权重越大) -
I:表示像素,RGB/灰度 -
u,v:窗口移动的方向 -
H:harris矩阵,由两个方向上的梯度构建而成 -
图像梯度: -
Harris矩阵: -
Harris矩阵H 的特征值分析 -
两个特征值反映相互垂直方向上的变化情况,分别代表变化最快和最慢的方向,特征值大变化快,特征值小变化慢 -
-
λ1 ≈ λ2 ≈ 0, 两个方向上变化都很小,兴趣点位于光滑区域 -
λ1 > 0 , λ2 ≈ 0 ,一个方向变化快,一个方向变化慢,兴趣点位于边缘区域 -
λ1 , λ2 > 0 , 两个方向变化都很快,兴趣点位于角点区域(容易判断)
-
Harris角点准则代替矩阵分解: -
反映特征值情况,trace为迹 -
k的值越小,检测子越敏感 -
只有当λ1和λ2同时取得最大值时,C才能取得较大值 -
避免了特征值分解,提高检测计算效率 -
非极大值抑制(Non-maximal Suppression) 选取局部响应最大值,避免重复的检测 -
算法流程: -
0)滤波、平滑,避免出现阶跃函数 1)计算图像水平和垂直方向的梯度 2)计算每个像素位置的Harris矩阵 3)计算每个像素位置的Harris角点响应值 -
3+)非极大值抑制 -
4)找到Harris角点响应值大于给定阈值且局部最大的位置作为特征点 -
检测结果:
2、基于LoG的多尺度特征检测子
-
动机:Harris角点检测不具有尺度不变性,让特征点具有尺度不变性
-
解决方法:尺度归一化LoG算子,处理尺度的变化 -
LoG算子:Lindeberg(1993)提出Laplacian of Gaussian (LoG)函数的极值点对应着特征点 尺度空间: 一副图像使用不同大小滤波核滤波(e.g.高斯滤波),越大的滤波核越模糊,分辨率越小,不同滤波核滤波后的空间为尺度空间=3维空间(图像+尺度),模拟人类视觉,较远物体模糊,一系列滤波核构成的不同分辨率图像为尺度空间->LoG能够处理不同尺度的图像
-
LoG算子[1]形式:高斯滤波性质:卷积->求拉普拉斯算子==求拉普拉斯算子->卷积 其中 是LoG算子 -
尺度归一化LoG[2](使得具有可比性=汇率):其中 是尺度归一化LoG算子 -
不同尺度下的LoG响应值不具有可比性 -
构建尺度空间,同时在位置空间和 尺度空间寻找归一化LoG极值(极大 /极小)点作为特征点 -
不同尺度下 的响应值

-
LoG特征检测算法流程 -
1)计算不同尺度上的尺度归一化LoG函数值 -
2)同时在位置和尺度构成的三维空间上寻找 尺度归一化LoG的极值点 -
3)进行非极大值抑制,减少重复检测 (去除冗余、保持稳定性) -
检测结果:效果好,LoG计算量大
3、基于DoG的多尺度特征检测子(SIFT)——稳定和鲁棒
-
LoG可以由DoG近似:Lowe(2004)提出归一化LoG近似等价于相邻尺度的高斯差分(DoG) -
高斯空间: -
高斯差分DoG:相邻的空间做差,极点处对应特征点
-
尺度空间的构建
-
阶数:O=3 (octave=阶,每阶图像尺寸减少一半,阶数高->运算量大->尺度变化大) -
每阶有效差分数:S=3(每个阶内划分数) -
每阶层数:N=S+3 -
高斯空间
-
高斯差分
-
有效差分
(尺度空间有上下两个邻域才行,边界无效) -
任意设置
-
特征点位置的确定: -
1)尺度空间和图像空间上:3*3窗口,26个邻域,找极值点比其他都要大DoG,LoG找极大值或极小值 -
2)横轴向代表离散位置,纵轴代表DoG响应值,在极值点邻域内求二阶函数的极值=准确像素位置
-
亚像素特征点位置的确定
-
x: 为三维,坐标空间+尺度空间 -
f(x): 为DoG值 -
x0: 检测到离散坐标下的极大值点 -
任务:在x0附近近似一个二阶函数,求二阶函数极值得到更准确的亚像素极值位置
-
矩阵的表达-1阶
-
矩阵的表达-2阶
-
极值点有可能是边缘点,->除去边缘点:DoG在边缘处值较大,需要避免检测到边缘点 -
计算主方向:通过统计梯度直方图的方法确定主方向,使算法具有旋转不变性
-
SIFT特征检测流程:旋转不变性、尺度不变性、亮度 变化不变性,对视角变化、仿射变换有一定程度的稳定性
-
1)计算图像尺度空间:

