大数跨境
0
0

极市直播回放第107期丨NeurIPS 2022 Oral-张博航:如何从模型层面获得对抗鲁棒性保证?

极市直播回放第107期丨NeurIPS 2022 Oral-张博航:如何从模型层面获得对抗鲁棒性保证? 极市平台
2023-01-02
0
导读:附PPT下载地址
↑ 点击蓝字 关注极市平台
众所周知,现代的深度神经网络存在着严重的鲁棒性缺陷,容易遭受对抗样本的攻击。如何系统的获得可验证的鲁棒性保证是近年来一个重要的研究方向。
本次分享我们邀请到了北京大学的张博航,为大家介绍他们NeurIPS 2022上的工作:
Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean Function Perspective(NeurIPS 2022 Oral)
“该工作系统探究了深度学习领域的核心问题:是否能够从模型层面出发,设计出具有天然对抗鲁棒性的神经网络?对于基本的L无穷鲁棒性问题,我们揭示了Lipschitz神经网络的表达能力与其拟合布尔函数能力之间的深刻联系。从这一角度,本文首先指出了标准Lipschitz神经网络表达能力的本质缺陷,并进一步探究了近期所提出的新型网络结构(如L无穷网络)背后的深层次机理。最后,本文提出了一个鲁棒性神经网络的统一框架,称为SortNet(排序网络),该网络结构在CIFAR-10、ImageNet等多个数据集上均取得了SOTA的表现。”
后台回复“极市直播”或点击阅读原文即可获取PPT
➤详情传送门

极市直播预告丨NeurIPS 2022 Oral-张博航:如何从模型层面获得对抗鲁棒性保证?

论文

Rethinking Lipschitz Neural Networks and Certified Robustness: A Boolean Function Perspective(NeurIPS 2022 Oral)
论文地址:https://arxiv.org/abs/2210.01787
代码地址:https://github.com/zbh2047/sortnet

回放视频在这里☟

https://www.bilibili.com/video/BV1FK411q7RK/

PPT内容截图(后台回复“极市直播”或点击阅读原文即可获取PPT)

往期视频在线观看
B站:http://space.bilibili.com/85300886#!/
腾讯视频:http://v.qq.com/vplus/8be9a676d97c74ede37163dd964d600c

往期线上分享集锦:http://m6z.cn/6qIJzE(或直接阅读原文

如果觉得有用,就请分享到朋友圈吧!

△点击卡片关注极市平台,获取最新CV干货



推荐阅读


# CV技术社群邀请函 #

△长按添加极市小助手
添加极市小助手微信(ID : cvmart2)

备注:姓名-学校/公司-研究方向-城市(如:小极-北大-目标检测-深圳)


即可申请加入极市目标检测/图像分割/工业检测/人脸/医学影像/3D/SLAM/自动驾驶/超分辨率/姿态估计/ReID/GAN/图像增强/OCR/视频理解等技术交流群


每月大咖直播分享、真实项目需求对接、求职内推、算法竞赛、干货资讯汇总、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企视觉开发者互动交流~



觉得有用麻烦给个在看啦~  

【声明】内容源于网络
0
0
极市平台
为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞赛实践等丰富的内容与服务。
内容 8155
粉丝 0
极市平台 为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞赛实践等丰富的内容与服务。
总阅读919
粉丝0
内容8.2k