大数跨境
0
0

38.7fps!EdgeSAM = RepViT + SAM,移动端超强变种,已开源!

38.7fps!EdgeSAM = RepViT + SAM,移动端超强变种,已开源! 极市平台
2024-03-11
2
↑ 点击蓝字 关注极市平台
者丨AIWalker
来源丨AIWalker
编辑丨极市平台

极市导读

 

SAM轻量化的终点竟然是RepViT + SAM,移动端速度可达38.7fps。 >>加入极市CV技术交流群,走在计算机视觉的最前沿

对于 2023 年的计算机视觉领域来说,「分割一切」(Segment Anything Model)是备受关注的一项研究进展。尽管SAM具有各种优势,但速度慢是其不得不提的一个缺点,端侧根本就跑不动。研究者们也提出了一些改进策略:将默认 ViT-H 图像编码器中的知识提炼到一个微小的 ViT 图像编码器中,或者使用基于 CNN 的实时架构降低用于 Segment Anything 任务的计算成本

就在今日,arXiv上同时公开两篇SAM轻量化的方法EdgeSAMRepViT-SAM,更巧合的是两者采用了完全相同的Image Encoder模块:RepViT;两者也都在手机端达到了超快处理速度,值得一提的是:EdgeSAM能在iphone14手机上达到38.7fps的处理速度

https://arxiv.org/abs/2312.05760
https://github.com/THU-MIG/RepViT

该方案延续了MobileSAM的处理方式,即采用原生SAM的ViT Encoder模块对所替换的Encoder模块进行知识蒸馏。

  • 在实现方面,RepViT-SAM引入了移动端新秀[RepViT]的RepViT-M2.3作为图像编码器提取图像特征;
  • 在老师模型方面,它选用了SAM-ViT-H版本进行蒸馏。
  • 在应用方面,该方案进行了多种任务适配,如Mask预测、边缘检测等。

https://arxiv.org/abs/2312.06660
https://github.com/chongzhou96/EdgeSAM

相比而言,EdgeSAM方法上会显得更优异:它并非仅仅参考MobileSAM进行了Image Encoder的蒸馏,还仔细分析了不同蒸馏策略并证实:任务不可知的编码器蒸馏难以学习到SAM所具备的全部知识

有鉴于此,作者提出:循环使用bbox与point提示词,同时对提示词编码器与Mak解码器进行蒸馏,以便于蒸馏模型能够准确的学习到提示词与Mask之间的复杂关系

  • 在2080Ti上,相比原生SAM,EdgeSAM推理速度快40倍;
  • 在iPhone14上,相比MobileSAM,EdgeSAM推理速度快14倍,达到了38.7fps。

公众号后台回复“数据集”获取100+深度学习各方向资源整理

极市干货

技术专栏:多模态大模型超详细解读专栏搞懂Tranformer系列ICCV2023论文解读极市直播
极视角动态欢迎高校师生申报极视角2023年教育部产学合作协同育人项目新视野+智慧脑,「无人机+AI」成为道路智能巡检好帮手!
技术综述:四万字详解Neural ODE:用神经网络去刻画非离散的状态变化transformer的细节到底是怎么样的?Transformer 连环18问!

点击阅读原文进入CV社区

收获更多技术干货


【声明】内容源于网络
0
0
极市平台
为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞赛实践等丰富的内容与服务。
内容 8155
粉丝 0
极市平台 为计算机视觉开发者提供全流程算法开发训练平台,以及大咖技术分享、社区交流、竞赛实践等丰富的内容与服务。
总阅读919
粉丝0
内容8.2k