Micro LED的工艺流程包括衬底制备、外延片与晶圆制备、像素组装、缺陷监测、全彩化、光提取与成型、像素驱动等7个环节,具体来说其产业链包括芯片制造、巨量转移、面板制造、封装/模组、应用及相关配套产业。Micro LED 芯片微小化也使得传统的制造技术不再适用,在芯片制备的各个环节都面临着全新的技术挑战,成本居高不下,这也制约了 Micro LED 芯片当前的渗透率。
1、微缩芯片及外延目前,半导体芯片的制程已相当成熟,但 Micro LED 支撑技术及相关产业公司仍处于摸索阶段。与传统 LED 产业链相比,Micro LED 芯片的微缩化对芯片制造提出了更高的要求,既需要将芯片尺寸微缩至50um以下,同时还需要满足高 PPI 需求,因此在外延制备、PL、ITO、光刻、蚀刻、磊晶剥离、电测等环节均面临精细化工艺、良率提升等技术难关。此外,随着 LED 芯片尺寸变小,蚀刻过程中侧壁缺陷将对内部量子效率 IQE 造成影响,大幅减少芯片传输量,导致外部量子效率 EQE 效率减弱。目前来看,反射膜添加剂引入光提前结构均可实现一定程度的 EQE 提升,但在小型领域应用仍属于工程问题,未来发展仍存在挑战。2、巨量转移由于 Micro LED 的芯片尺寸小,相较传统 LED 单位面积下晶粒数量庞大,需要将大量 LED 晶粒准确且高效转移至电路板上。以3840*2160的4K显示为例,需转移晶体数量超过2,000万,按照常规转移效率计算,需要几日甚至几周才能完成全部的晶粒转移,晶粒转移效率及良率控制未达到量产标准,难以形成规模效应,制备成本及产品价格居高不下。巨量转移被认为是实现 Micro LED 价格大规模降低、从而实现其商业化落地的核心技术之一。若巨量转移技术取得突破,将带来一个广阔的转移设备市场。针对这一技术难点,业内的主流解决方案目前包括静电吸附、相变化转移、流体装配、滚轴转印、磁力吸附、范德华力转印、激光转移等。激光转移在修复难度和转移效率等维度上效果更优,未来有可能成为巨量转移的主流技术。3、全彩化显示器的色彩显示需要通过全彩化技术来实现,这也是 Micro LED 的核心技术难点之一。目前 Micro LED 在近眼显示领域尚无法实现全彩的高亮显示,在 AR/VR 等对分辨率、色彩显示要求极高的应用场景仍面临巨大挑战。Micro LED 单色显示仅需通过倒装结构封装与驱动 IC 贴合,显示、制备与工艺难度相对较低,而全彩化方案工艺复杂度相对较高,现有的解决方案有 RGB 三色 LED 法、UV/蓝光LED+发光介质法、透镜合成法,但目前均存在相应的短板。以 RGB 三色阵列为例,需要依次转贴红、蓝、绿晶粒。同时,由于嵌入晶粒规模超过十万,对于晶粒光效、波长的一致性、良率要求更高。一旦实际输出电流与理论电流出现偏差,就会导致像素呈现色彩偏差。在工艺流程和材料方面,UV/蓝光LED+发光介质法相较其他方案更为简单,主要采用蓝光 LED 来替换背光板、以量子点膜或荧光粉作为发光介质替代 RGB 滤光片。量子点膜的粒径介于1-10nm之间,较荧光粉颗粒更小,同时因其高吸光-发光效率、宽吸收频谱等特性,色彩纯度与饱和度更高,是比荧光粉更优的技术方案。以蓝光 LED 替换背光板光源后,量子点膜在蓝光激发下可发出纯正的绿光和红光,完成全彩显示。4、检测修复由于 Micro LED 的芯片尺寸和间距极小,传统的测试设备难以使用,如何在百万甚至千万级的芯片中对缺陷晶粒进行检测、修复或替换是一个巨大的挑战。现有的解决方案包括光致发光测试和电致发光测试。光致发光测试主要利用光源激发硅片或太阳电池片,通过对特定波长的发光信号进行采集、数据处理,从而识别芯片缺陷。电致发光测试则是指,在强电场作用下,芯片中的电子成为过热电子后,根据其回到基态时所发出的光来检测芯片缺陷。5、芯片封装Micro LED相较传统 LED 芯片间距小,这也导致贴片难度增加,成本也会面临指数型增长。现有的解决方案以 COB和 COG 封装为主,近来也出现了新型封装技术 MIP,全称 Micro LED in Package,即集成封装。MIP 在成本和效率上更具优势,它的基板精度高,芯片无需测试筛选,测试分选在封装环节即可完成。此外,由于点测难度从芯片级难度转换为引脚上的点测,测试难度降低,并且可采用巨量转移技术,具备较大发展前景。6、基板制造作为传统显示领域的固定链条,基板材料一直处于稳定地位,常见的材料包括 PCB、玻璃基板。Micro LED 入局可以促成对现有产能的消化,不过这也需要基板厂商为巨量转移技术做好承接。Micro LED 更容易在平整的玻璃基板上实现巨量转移,玻璃基板发展潜力更大。来源:新手入门测试