

继今年4月在《自然》提出“破晓”二维闪存原型器件后,复旦大学科研团队又迎来新突破。北京时间10月8日晚,复旦大学在《自然》(Nature)上发文,题目为《全功能二维-硅基混合架构闪存芯片》(“A full-featured 2D flash chip enabled by system integration”),相关成果率先实现全球首颗二维-硅基混合架构芯片,攻克新型二维信息器件工程化关键难题。
封装后的二维-硅基混合架构闪存芯片(带PCB板)
面对摩尔定律逼近物理极限的全球性挑战,具有原子级厚度的二维半导体是目前国际公认的破局关键,科学家们一直在探索如何将二维半导体材料应用于集成电路中。当前,国际上对二维半导体的研究仍在起步阶段,尚未实现大规模应用。
相关研究成果以《全功能二维-硅基混合架构闪存芯片》(A full-featured 2D flash chip enabled by system integration)为题,于北京时间10月8日晚间在《自然》(Nature)期刊上发表。
从原子级器件到功能芯片
跨越“从实验室到工厂”鸿沟
大数据与人工智能时代对数据存取性能提出了极致要求,而传统存储器的速度与功耗已成为阻碍算力发展的“卡脖子”问题之一。今年4月,周鹏-刘春森团队于《自然》(Nature)期刊提出“破晓”二维闪存原型器件,实现了400皮秒超高速非易失存储,是迄今最快的半导体电荷存储技术,为打破算力发展困境提供了底层原理。
“破晓(PoX)”皮秒闪存器件
然而,颠覆性器件要真正走向系统级应用,往往是一场漫长的马拉松。回溯硅基芯片的发展历程,半导体晶体管自1947年诞生起,历经贝尔实验室、仙童与英特尔等顶尖力量二十余年的接力研发,才终于催生出全球第一颗CPU。
作为集成电路的前沿领域,二维电子学在近年来获得诸多关注,但研究者们最关心的问题莫过于“LAB to FAB(从实验室到工厂)”难题,也就是这项技术未来是否可以得到真正的应用。如何加速产业化进程,让二维电子器件走向功能芯片?周鹏-刘春森团队主动融入产业链,尝试从未来应用的终点出发,“从10到0”倒推最具可能性的技术发展路径。
“从目前技术来看,存储器是二维电子器件最有可能首个产业化的器件类型。因为它对材料质量和工艺制造没有提出更高要求,而且能够达到的性能指标远超现在的产业化技术,可能会产生一些颠覆性的应用场景。”在存储器领域深耕多年的周鹏认为。
当前,CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化半导体)技术是集成电路制造的主流工艺,市场中的大部分集成电路芯片均使用CMOS技术制造,产业链较为成熟。团队认为,如果要加快新技术孵化,就要将二维超快闪存器件充分融入CMOS传统半导体产线,而这也能为CMOS技术带来全新突破。
二维-硅基混合架构闪存芯片结构示意图,包含二维模块、CMOS控制电路和微米尺度通孔
基于CMOS电路控制二维存储核心的全片测试支持8-bit指令操作,32-bit高速并行操作与随机寻址,良率高达94.3%。这也是迄今为止世界上首个二维-硅基混合架构闪存芯片,性能“碾压”目前的Flash闪存技术,首次实现了混合架构的工程化。
“从第一个原型晶体管到第一款 CPU花了大约24年,而我们通过把先进技术融入工业界现有的CMOS产线,这一原本需要数十年的积累过程被大幅压缩,未来可以进一步加速探索颠覆性应用。”刘春森总结。
世界首颗二维-硅基混合架构闪存芯片
复旦大学集成电路与微纳电子创新学院、集成芯片与系统全国重点实验室研究员刘春森和教授周鹏为论文通讯作者,刘春森研究员和博士生江勇波、沈伯佥、袁晟超、曹振远为论文第一作者。研究工作得到了科技部、教育部、国家自然科学基金委、上海市科委、科学探索奖等项目的资助,以及教育部创新平台的支持。
END
*欢迎大家进入“集微天天IC半导体交流群”(如在①~⑦群无需重复进群),扫下面二维码或搜索 jiayou_zj 添加编辑微信,备注“加群”,编辑将邀请您进群。

爆款好文:
温馨提示:



点击下载爱集微APP
打开半导体新闻阅读新方式

