大数跨境
0
0

剖析华为最新ADS成像毫米波雷达方案

剖析华为最新ADS成像毫米波雷达方案 微波射频网
2021-04-22
0
导读:华为于4月18日发布了用于ADS(Autonomous Driving Solution)核心传感器,成像毫米波雷达。趁热乎的,我来分析下华为成像雷达方案。
华为于4月18日发布了用于ADS(Autonomous Driving Solution)核心传感器,成像毫米波雷达。趁热乎的,我来分析下华为成像雷达方案。
华为2019年毫米波雷达项目立项到2021年量产交付,这部分交付的应该是传统毫米波雷达,也就是角雷达,中距雷达(MRR)以及远距雷达(LRR)。而华为重推的是2022 SOP的成像雷达,我们来看看作为华为ADS核心组件的成像雷达特点,以及技术评价,顺便本文也是成像雷达科普。
图1 华为成像雷达
首先华为采用了经典FMCW方案,而没有采用诸如PMCW,OFDM等方案,路线相对保守稳定,这应该是技术调研后的结果。
大概率采用了级联RF-CMOS雷达射频前端+后端基带处理芯片分立方案,也就是目前做成像雷达的主流方案,没有特别的地方。
采用远近扫方案,这是传统前向雷达的典型方案,只不过传统前向雷达的远近扫FoV都比较窄,华为的近距离FoV要宽很多,但是目前成像雷达,比如Conti ARS540能够实现±60°,300m范围环境感知,不区分远近扫,从华为的产品介绍来看离此水平有提升空间。
天线方案也就是收发通道方案采用了12TX24RX,与目前主流级联成像雷达方案的12TX16RX确实不同。也就是接收通道变多了,华为PPT中还特意指出了这一点,较传统雷达有24倍的提升,较业界主流成像雷达有50%的通道数提升。这两个数字是没有错的,目前传统前雷达是3TX4RX,虚拟通道是12,12TX24RX,虚拟通道是288,288/12=24。同理,主流成像雷达是12TX16RX,虚拟通道是192,简单计算可得50%的通道数提升。
图2 为成像雷达通道信息
需要指出是,我们设置更多通道的目的当然是提高角度分辨率,包括俯仰以及水平,但是将通道数领先作为商业宣传无可厚非,而作为技术宣传就还不够狠。一方面,我们需要多通道,正所谓巧妇难为无米之炊,如果都没有多通道,当然没法实现高分辨(软件算法实现暂不讨论);另一方面,有了多通道,相当于赌徒有了一副好牌,厨子有了好食材,但是赌徒有可能将好牌打得稀巴烂,厨子也可能浪费了好食材。意思是如何利用好这288个通道才是体现技术功力的地方,而不是单单看提升了多少通道。比如这288个通道是否都用于DoA,我猜想这288个通道大概率有一部分用于校准,实际用于DoA的会低于这个数字。另外,如何分配水平及俯仰通道数,如何将角度解模糊设计考虑其中,同时又要保证天线布局不会使得雷达板尺寸过大等等,华为的方案还要考虑远扫近扫天线分配,说实话,这块确实很难,目前还不知道华为如何解决,解决到什么程度,发布会当然没必要讲这些,我们到时候拆个雷达看看布局就好分析了哈哈。
另外,PPT中提到,角度水平分辨率为1°,垂直做到2°,我倒是不想只看到这些冰冷数字,完全可以在标定室放些角反射器,这些角反射器同距离,静止,不同俯仰,不同方位,看雷达能够分辨的最小角度的统计结果,能否达到以上指标。
另外,还介绍了4D点云应用,中国场景数据优化,灵活架构(就是融合层次及方案)等信息,说实话,也是中规中矩,没有人无我有,眼前一亮的激动,只期华为做到人有我优吧。如果对这一部分感兴趣,我在公众号(毫米波雷达技术杂货铺),4D雷达板块都有详细论述,感兴趣的可以看看。
图3 为成像雷达技术特点
我在毫米波雷达技术杂货铺专栏文章,4D雷达之信号处理架构中指出过,高动态范围是成像雷达区别于传统雷达的核心特征之一,非常关键。华为也关注了这一点。从发布会的测试demo视频也可以粗略看到大小目标并行运动点云,不过是否可以稳定跟踪及识别还不能确定。
图4 为成像雷达动态范围
发布会中还提到了多径处理,用于非视距感知,能将这一点作为亮点分享的国内雷达厂商极少。事实上,视觉方案,激光雷达等传感器都是视距检测,也就是如果有目标被遮挡,摄像头,Lidar是没有办法感知到被遮挡目标的,因为光没法转弯嘛,但毫米波雷达发射接收的是电磁波,存在多径传播现象,也就是说,部分NLOS电磁波能量经前车车底传播,被前前车反射后又经前车车底反射回来被雷达接收。这一点在大陆ARS540公开技术资料中也有提及,如图6,相关非视距传播技术比ARS430提升40%。
图5 为成像雷达多径处理
图6 大陆ARS成像雷达多径利用
图7 华为成像雷达多径利用
华为成像雷达其他部分,比如护栏识别,垂直测高,远距高分辨,Freespace,雷达数据融合等都属于业内主流技术特点,没太多新意,因为没有公布更多信息,也没有办法进一步评价。
此外,更多的涉及成像雷达水平的技术点也未开,比如,
1 对于288通道,雷达能否可靠自校准,包括水平及俯仰,这么多通道保证相位不出问题也是很难的,对校准要求极高,这也是Oculii推它的VAI技术的原因之一。
2 跟踪方法未提及,目前主要分享了点云信息,目标跟踪方案及效果未知。
3对杂点的处理未提及,毫米波雷达的一个严重drawback就是杂点虚警问题,华为在这上面否有独特的技术理解还未可知。
4 雷达间互干扰,抗雷达间互干扰是后续雷达部署必须考虑的问题。
5 对VRU的识别,传统毫米波雷达主要应用于高速ADAS,基本不用于城区,那么高速ADAS条件下我们关心对车辆的稳定跟踪就好了,成像雷达的应用面扩展至城区,道路交通参与者在数量以及种类上比高速ADAS场景提升了一个数量级,尤其是道路交通弱势群体(VRU),包括行人,骑行者,骑电瓶车的人,骑摩托车的人,对这些人的稳定检测,跟踪,识别是重中之重,我期待华为成像雷达在这方面的表现。
6 另外就是量产硬件一致性,稳定性,可靠性这些问题。
从公开的测试demo以及PPT讲解,华为的成像雷达在国内基本属于第一梯队,但能否在国际上站稳脚跟还需观察,毕竟ZF,Aptiv,Continental等等都是强劲对手。
中国毫米波雷达产业真正起步也就这几年的事,道路异常坎坷,冲破国外巨头垄断也绝非易事。目前角雷达国内本土企业慢慢开始占有一定份额,前雷达依旧任重道远。事实上,前雷达实现难度远高于角雷达,而成像前雷达更不是一朝一夕的功夫,所以如果我们看到点云demo就欢呼雀跃,不过是自欺欺人罢了,路途遥远,同志仍须努力。我到觉得华为后期完全可以自研雷达芯片,发挥芯片领域,通信领域的优势,从芯片,硬件,天线,算法等各个方面完成跨越式创新,将车载雷达集成通信能力,完成车载通信感知一体化,既能环境成像感知,又能依靠雷达实现车间,车与路端通信,那就很好玩了,可能频段是个问题吧。

【本文图片来自公开技术资料】

来源:
毫米波雷达技术杂货铺公众号
作者:叶融茶归
最新5G研讨会

在线讲座:5G终端测试(波束管理、MIMO天线、虚拟路测、KPI测试等)(4月29日)
重磅活动:产品研发副总裁、5G和卫星应用专家联合剖析最棘手的宽带毫米波测试(5月10日)
在线讲座:解读O-RAN测试挑战与方法(5月11日)
在线讲座:Massive MIMO O-RU 设计与一致性测试挑战(5月13日)
在线讲座:微波器件与天线设计中的多物理场仿真(5月18日)

原创文章:

Wi-Fi 6射频技术全面解析及Wi-Fi 7热点技术介绍

无线技术专栏:无线通信信号传输模型

使用矢网测量PA S11、S21和饱和功率的方法

学个Antenna:Matlab天线工具箱知多少(一)

原创干货:使用矢网测量PA S12 S22和功率的方法

ETC 天线技术概览(工作方式、极化方式、实现方式、技术革新点)

附加相位噪声测试方法

4G和5G基站天线工程知识和应用场景

噪声的意义及测量方法

非50欧系统阻抗的S参数测试

交调失真的意义及矢网实例测量方法

增益压缩的意义及矢网实操测量方法

S参数的意义及矢网实例测量方法

学个Antenna:偶极子天线馈电及倒V天线

从电磁波产生到对称阵子天线

张跃平教授:无线电科学与技术中的因子4

【声明】内容源于网络
0
0
微波射频网
专注无线通信、微波射频、天线、卫星通信、雷达、半导体等领域。微波射频产学研交流平台 - 射频行业知名媒体
内容 2527
粉丝 0
微波射频网 专注无线通信、微波射频、天线、卫星通信、雷达、半导体等领域。微波射频产学研交流平台 - 射频行业知名媒体
总阅读1.8k
粉丝0
内容2.5k