作者简介
赵文玉
中国信息通信研究院技术与标准研究所正高级工程师,博士,主要从事超高速光纤通信、模块芯片器件和量子信息领域的技术研究、标准制定和测试验证等工作。
徐云斌
中国信息通信研究院技术与标准研究所高级工程师,博士,主要从事超高速光纤通信智能管控领域的技术研究、标准制定和测试验证等工作。
汤 瑞
中国信息通信研究院技术与标准研究所高级工程师,主要从事超高速光纤通信、OTN、模块芯片器件等领域技术研究、标准制定和测试验证等工作。
赵 鑫
中国信息通信研究院技术与标准研究所工程师,主要从事超高速光纤通信、OTN、模块芯片器件等领域技术研究、标准制定和测试验证等工作。
张海懿
中国信息通信研究院技术与标准研究所副所长,正高级工程师,主要从事超高速光纤通信、模块芯片器件、量子信息、网络人工智能等领域的技术研究、标准制定和产业咨询等工作。
论文引用格式:
赵文玉, 徐云斌, 汤瑞, 等. 全光网络技术、标准、应用现状及展望[J]. 信息通信技术与政策, 2021,47(12):1-7.
∗基金项目:国家重点研发计划项目(No.2018YFB1801200,No.2019YFB1803700)资助
全光网络技术、标准、应用现状及展望*
赵文玉 徐云斌 汤瑞 赵鑫 张海懿
(中国信息通信研究院技术与标准研究所,北京 100191)
摘要:5G、数据中心等新基建的部署和产业整体数字化转型进一步加速了光纤通信网络的发展和应用。阐述了基于波长通路交叉的全光网络关键技术进展、标准化现状和现网部署应用情况,并对全光网络未来发展进行了展望。
关键词:全光网;关键技术;标准化;部署应用;现状及展望
中图分类号:TN929.11 文献标识码:A
引用格式:赵文玉, 徐云斌, 汤瑞, 等. 全光网络技术、标准、应用现状及展望[J]. 信息通信技术与政策, 2021,47(12):1-7.
doi:10.12267/j.issn.2096-5931.2021.12.001
0 引言
随着5G、数据中心等新型基础设施建设的有序推进和产业数字化进程的整体加速,作为信息通信网络的基础承载底座,光纤通信网络的发展及其优势特性受到高度关注,相关关键技术也在持续按需演进[1]。全光网络作为光纤通信技术的终极组网应用目标,近二十年业界持续聚焦推动研究,期望获得与电域处理技术类似的组网功能和性能。但受限于光层处理能力,基于光分组交换、光突发交换等全光处理和光交换技术在应用方面并没有取得本质突破,目前步入商用或可商用的依然主要是基于波长通路或端口交换的全光组网机制,整体上仍处于全光网络发展的初级阶段。基于云化开展应用已成未来主流趋势,数据中心、云计算、5G/6G等与光纤通信网络进一步深度融合或协同,面对多样化海量数据差异化传输需求,光纤通信网络如何按需革新发展成为业界关注的热点。本文重点分析了基于波长通路交叉的全光网络关键技术、标准化及应用情况的进展现状,并对其未来发展进行了展望。
1 全光网络关键技术进展
1.1 光域技术
全光网络概念相对泛化,主要范畴至少应包括全光域信号的处理和调度,典型关键技术包括光交换(交叉)技术、全光节点结构、传输特性控制技术(功率、色散和信噪比等),其中传输特性控制属于高速光传输共性技术,本文不再赘述。
1.1.1 光交换(交叉)技术
光交换(交叉)技术主要包括基于分组或者类分组的光交换、基于光波长通路的光交叉、基于光端口的光交叉等技术,其中基于分组或者类分组的光交换技术近十年没有取得突破性进展,近期公开报道聚焦点偏少,距离普适性商用时间无法预计。基于光波长通路的光交叉技术经历了不同的发展阶段,由最初主要面向两维可重构光分插复用器(Reconfigurable Optical Add-Drop Multiplexe,ROADM)结构的波长阻断、平面波导等技术演进到支持多端口维度的波长选择开关(Wavelength Selective Switch,WSS)技术,其中WSS包括微型电子机械系统(Micro Electro Mechanical System,MEMS)、液晶(Liquid Crystal,LC)和硅基液晶(Liquid Crystal on Silicon,LCoS)3种技术原理。综合考虑全光节点维度、切换时间、灵活栅格支持等特性,基于LCoS的WSS是目前全光交叉节点的主要技术[2-3]。
目前,商用网络使用的WSS主要包括1×9和1×20两种端口规格(或双路集成),部分采用了大于1×20的端口规格,同时为了便于上下路灵活控制,在光交叉节点中可引入N×M端口的广播光开关(Multicast Switch,MCS;包括N个耦合器和M个光放大器)或WSS。其中,MCS典型端口为8×16、8×24、16×12/16/24等,WSS典型端口为双路8×24。受近期及未来可预期的大容量传输需求驱动,WSS目前朝着更多端口数量、更高集成度的方向发展,如Lumentum目前已支持双路1×35端口的WSS产品,II-VI公司也在2021年10月发布了双路1×48端口的WSS产品,ROADMap系统公司在2020年世界光纤通信大会(Optical Fiber Communication,OFC)上报道了基于单个4k LCoS器件集成24个1×12端口的WSS。另外,考虑到超大容量光传输系统正在朝着扩展波段、空分复用等方面发展,支持相应特性的WSS也在不断推动研制,如II-VI公司2020年8月发布了支持C+L波段的WSS产品,支持频宽由6 THz扩展到11 THz;荷兰埃因霍温理工大学的研究人员也报道了面向低成本、低维度,支持O、S、C和L波段基于光子集成的WSS[4];业界同时也已开展面向空分复用(Space Division Multiplexing,SDM)应用的光交叉/交换技术的研究和分析[5-6]。
基于端口相对成熟的光交叉一般主要基于MEMS、直接光束偏转(Direct Beam Streering,DBS)和LC/LCoS等技术实现,其典型特性见表1。从表1可以看出,这些交叉技术的切换时间一般在ms以上的量级,为了获得更快的切换时间,研究人员持续探索不同的机制实现更快的切换时间,例如基于硅光、铌酸锂等工作机制。2020年的OFC会议报道了基于PLC的切换技术,切换时间达到了87 μs[7]。
表1 基于端口交叉的光开关基本特性
本文刊于《信息通信技术与政策》2021年 第12期
主办:中国信息通信研究院
《信息通信技术与政策》是工业和信息化部主管、中国信息通信研究院主办的专业学术期刊。本刊定位于“信息通信技术前沿的风向标,信息社会政策探究的思想库”,聚焦信息通信领域技术趋势、公共政策、国家/产业/企业战略,发布前沿研究成果、焦点问题分析、热点政策解读等,推动5G、工业互联网、数字经济、人工智能、区块链、大数据、云计算等技术产业的创新与发展,引导国家技术战略选择与产业政策制定,搭建产、学、研、用的高端学术交流平台。
《信息通信技术与政策》官网开通啦!
为进一步提高期刊信息化建设水平,为广大学者提供更优质的服务,我刊于2020年11月18日起正式推出官方网站,现已进入网站试运行阶段。我们将以更专业的态度、更丰富的内容、更权威的报道,继续提供有前瞻性、指导性、实用性的优秀文稿,为建设网络强国和制造强国作出更大贡献!
推荐阅读
你“在看”我吗?

