大数跨境
0
0

SpringBoot 方法级耗时监控器

SpringBoot 方法级耗时监控器 终码一生
2025-09-13
0
01
需求痛点
线上应用常见问题:
  • 某些接口偶尔变慢,但日志看不出问题;
  • 方法调用次数不透明,性能瓶颈难找;
  • 线上出现失败/超时,但缺乏统计维度;
  • 想要监控,却不想引入重量级的 APM 方案。
常见 APM 工具功能强大,但部署复杂、学习成本高,不适合中小团队或者单机项目。
👉 那有没有可能,基于 SpringBoot 实现一个轻量级耗时监控器,做到方法级监控 + 可视化统计 ?
02
功能目标
我们希望监控器能做到:
基础监控能力:
  • 方法调用次数:统计某方法被调用了多少次
  • 耗时指标:平均耗时、最大耗时、最小耗时
  • 成功/失败次数:区分正常与异常调用
  • 多维排序:支持按调用次数、平均耗时、失败次数等维度排序
进阶功能:
  • 时间段过滤:选择时间范围(如最近 5 分钟、1 小时、1 天)查看数据
  • 接口搜索:快速定位特定接口的性能数据
  • 可视化控制台:实时展示接口调用统计
03
技术设计
整体思路
方法切面采集使用 SpringAOP(基于拦截器亦可) 拦截 Controller 方法,在方法执行前后记录时间差、执行结果(成功/失败)。
分级数据存储采用分级时间桶策略:
  • 最近5分钟:秒级精度统计
  • 最近1小时:分钟级聚合
  • 最近24小时:小时级聚合
  • 最近7天:天级聚合
智能查询根据查询时间范围,自动选择最适合的数据粒度进行聚合计算。
接口展示提供 REST API 输出统计数据,前端使用 TailwindCSS + Alpine.js 渲染界面。
04
核心实现
  1. 时间桶数据模型
@Data
publicclassTimeBucket {
    privatefinalAtomicLongtotalCount=newAtomicLong(0);
    privatefinalAtomicLongsuccessCount=newAtomicLong(0);
    privatefinalAtomicLongfailCount=newAtomicLong(0);
    privatefinalLongAddertotalTime=newLongAdder();
    privatevolatilelongmaxTime=0;
    privatevolatilelongminTime= Long.MAX_VALUE;
    privatefinallong bucketStartTime;
    privatevolatilelong lastUpdateTime;

    publicTimeBucket(long bucketStartTime) {
        this.bucketStartTime = bucketStartTime;
        this.lastUpdateTime = System.currentTimeMillis();
    }

    publicsynchronizedvoidrecord(long duration, boolean success) {
        totalCount.incrementAndGet();
        if (success) {
            successCount.incrementAndGet();
        } else {
            failCount.incrementAndGet();
        }
        
        totalTime.add(duration);
        maxTime = Math.max(maxTime, duration);
        minTime = Math.min(minTime, duration);
        lastUpdateTime = System.currentTimeMillis();
    }

    publicdoublegetAvgTime() {
        longtotal= totalCount.get();
        return total == 0 ? 0.0 : (double) totalTime.sum() / total;
    }

    publicdoublegetSuccessRate() {
        longtotal= totalCount.get();
        return total == 0 ? 0.0 : (double) successCount.get() / total * 100;
    }
}
  1. 分级采样指标模型
@Data
publicclassHierarchicalMethodMetrics {
    
    // 基础统计信息
    privatefinalAtomicLongtotalCount=newAtomicLong(0);
    privatefinalAtomicLongsuccessCount=newAtomicLong(0);
    privatefinalAtomicLongfailCount=newAtomicLong(0);
    privatefinalLongAddertotalTime=newLongAdder();
    privatevolatilelongmaxTime=0;
    privatevolatilelongminTime= Long.MAX_VALUE;
    privatefinal String methodName;

    // 分级时间桶
    privatefinal ConcurrentHashMap<Long, TimeBucket> secondBuckets = newConcurrentHashMap<>();  // 最近5分钟,秒级
    privatefinal ConcurrentHashMap<Long, TimeBucket> minuteBuckets = newConcurrentHashMap<>();  // 最近1小时,分钟级
    privatefinal ConcurrentHashMap<Long, TimeBucket> hourBuckets = newConcurrentHashMap<>();    // 最近24小时,小时级
    privatefinal ConcurrentHashMap<Long, TimeBucket> dayBuckets = newConcurrentHashMap<>();     // 最近7天,天级

    publicsynchronizedvoidrecord(long duration, boolean success) {
        longcurrentTime= System.currentTimeMillis();
        
        // 更新基础统计
        totalCount.incrementAndGet();
        if (success) {
            successCount.incrementAndGet();
        } else {
            failCount.incrementAndGet();
        }
        totalTime.add(duration);
        maxTime = Math.max(maxTime, duration);
        minTime = Math.min(minTime, duration);

        // 分级记录到不同时间桶
        recordToTimeBuckets(currentTime, duration, success);
        
        // 清理过期桶
        cleanupExpiredBuckets(currentTime);
    }

    public TimeRangeMetrics queryTimeRange(long startTime, long endTime) {
        List<TimeBucket.TimeBucketSnapshot> buckets = selectBucketsForTimeRange(startTime, endTime);
        return aggregateSnapshots(buckets, startTime, endTime);
    }
}
  1. AOP 切面统计
@Slf4j
@Aspect
@Component
publicclassMethodMetricsAspect {
    
    privatefinal ConcurrentHashMap<String, HierarchicalMethodMetrics> metricsMap = newConcurrentHashMap<>();

    @Around("@within(org.springframework.web.bind.annotation.RestController) || " +
            "@within(org.springframework.stereotype.Controller)")

    public Object recordMetrics(ProceedingJoinPoint joinPoint)throws Throwable {
        StringmethodName= buildMethodName(joinPoint);
        longstartTime= System.nanoTime();
        booleansuccess=true;
        
        try {
            Objectresult= joinPoint.proceed();
            return result;
        } catch (Throwable throwable) {
            success = false;
            throw throwable;
        } finally {
            longduration= (System.nanoTime() - startTime) / 1_000_000// Convert to milliseconds
            
            metricsMap.computeIfAbsent(methodName, HierarchicalMethodMetrics::new)
                     .record(duration, success);
        }
    }

    private String buildMethodName(ProceedingJoinPoint joinPoint) {
        StringclassName= joinPoint.getTarget().getClass().getSimpleName();
        StringmethodName= joinPoint.getSignature().getName();
        return className + "." + methodName + "()";
    }

    public Map<String, HierarchicalMethodMetrics> getMetricsSnapshot() {
        returnnewConcurrentHashMap<>(metricsMap);
    }
}
  1. 数据查询接口
@RestController
@RequestMapping("/api/metrics")
@RequiredArgsConstructor
publicclassMetricsController {
    
    privatefinal MethodMetricsAspect metricsAspect;

    @GetMapping
    public Map<String, Object> getMetrics(
            @RequestParam(required = false) Long startTime,
            @RequestParam(required = false) Long endTime,
            @RequestParam(required = false) String methodFilter)
 {
        
        Map<String, Object> result = newHashMap<>();
        Map<String, HierarchicalMethodMetrics> snapshot = metricsAspect.getMetricsSnapshot();
        
        // 应用接口名过滤
        if (StringUtils.hasText(methodFilter)) {
            snapshot = snapshot.entrySet().stream()
                    .filter(entry -> entry.getKey().toLowerCase().contains(methodFilter.toLowerCase()))
                    .collect(Collectors.toMap(Map.Entry::getKey, Map.Entry::getValue));
        }
        
        // 时间范围查询
        if (startTime != null && endTime != null) {
            snapshot.forEach((methodName, metrics) -> {
                HierarchicalMethodMetrics.TimeRangeMetricstimeRangeMetrics=
                        metrics.queryTimeRange(startTime, endTime);
                Map<String, Object> metricData = buildTimeRangeMetricData(timeRangeMetrics);
                result.put(methodName, metricData);
            });
        } else {
            // 全量数据
            snapshot.forEach((methodName, metrics) -> {
                Map<String, Object> metricData = buildMetricData(metrics);
                result.put(methodName, metricData);
            });
        }
        
        return result;
    }

    @GetMapping("/recent/{minutes}")
    public Map<String, Object> getRecentMetrics(
            @PathVariableint minutes,
            @RequestParam(required = false) String methodFilter)
 {
        
        longendTime= System.currentTimeMillis();
        longstartTime= endTime - (minutes * 60L * 1000L);
        
        return getMetrics(startTime, endTime, methodFilter);
    }

    @GetMapping("/summary")
    public Map<String, Object> getSummary(
            @RequestParam(required = false) Long startTime,
            @RequestParam(required = false) Long endTime,
            @RequestParam(required = false) String methodFilter)
 {
        
        // 汇总统计逻辑
        Map<String, HierarchicalMethodMetrics> snapshot = metricsAspect.getMetricsSnapshot();
        // ... 汇总计算
        return summary;
    }
}
  1. 定时清理服务
@Service
@RequiredArgsConstructor
publicclassMetricsCleanupService {

    privatefinal MethodMetricsAspect metricsAspect;

    @Value("${dashboard.metrics.max-age:3600000}")
    privatelong maxAge;

    @Scheduled(fixedRateString = "${dashboard.metrics.cleanup-interval:300000}")
    publicvoidcleanupStaleMetrics() {
        try {
            metricsAspect.removeStaleMetrics(maxAge);
            intcurrentMethodCount= metricsAspect.getMetricsSnapshot().size();
            log.info("Metrics cleanup completed. Current methods being monitored: {}", currentMethodCount);
        } catch (Exception e) {
            log.error("Error during metrics cleanup", e);
        }
    }
}
05
前端可视化界面
核心功能实现:
functionmetricsApp() {
    return {
        metrics: {},
        summary: {},
        timeRange'all',
        methodFilter'',
        
        // 时间范围设置
        setTimeRange(range) {
            this.timeRange = range;
            this.updateTimeRangeText();
            if (range !== 'custom') {
                this.fetchMetrics();
                this.fetchSummary();
            }
        },

        // 构建API查询URL
        buildApiUrl(endpoint) {
            let url = `/api/metrics${endpoint}`;
            const params = newURLSearchParams();
            
            // 添加时间参数
            if (this.timeRange !== 'all') {
                if (this.timeRange === 'custom') {
                    if (this.customStartTime && this.customEndTime) {
                        params.append('startTime'newDate(this.customStartTime).getTime());
                        params.append('endTime'newDate(this.customEndTime).getTime());
                    }
                } else {
                    const endTime = Date.now();
                    const startTime = endTime - (this.timeRange * 60 * 1000);
                    params.append('startTime', startTime);
                    params.append('endTime', endTime);
                }
            }
            
            // 添加搜索参数
            if (this.methodFilter.trim()) {
                params.append('methodFilter'this.methodFilter.trim());
            }
            
            return params.toString() ? url + '?' + params.toString() : url;
        },

        // 获取监控数据
        asyncfetchMetrics() {
            this.loading = true;
            try {
                const response = awaitfetch(this.buildApiUrl(''));
                this.metrics = await response.json();
                this.lastUpdate = newDate().toLocaleTimeString();
            } catch (error) {
                console.error('Failed to fetch metrics:', error);
            } finally {
                this.loading = false;
            }
        }
    };
}
06
配置说明
application.yml 配置
server:
  port:8080

spring:
application:
    name:springboot-api-dashboard
aop:
    auto:true
    proxy-target-class:true

# 监控配置
dashboard:
metrics:
    cleanup-interval:300000# 清理间隔:5分钟
    max-age:3600000         # 最大存活时间:1小时
    debug-enabled:false     # 调试模式

logging:
level:
    com.example.dashboard:INFO
Maven 依赖
<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-aop</artifactId>
    </dependency>

    <dependency>
        <groupId>org.projectlombok</groupId>
        <artifactId>lombok</artifactId>
        <optional>true</optional>
    </dependency>
</dependencies>
07
使用示例
启动应用
mvn clean install
mvn spring-boot:run
访问界面
http://localhost:8080/index.html
图片
API 调用示例
# 获取所有监控数据
curl http://localhost:8080/api/metrics

# 获取最近5分钟的数据
curl http://localhost:8080/api/metrics/recent/5

# 按时间范围和接口名筛选
curl "http://localhost:8080/api/metrics?startTime=1640995200000&endTime=1641000000000&methodFilter=user"

# 获取汇总统计
curl http://localhost:8080/api/metrics/summary

# 清空监控数据
curl -X DELETE http://localhost:8080/api/metrics
08
应用场景
性能分析:快速找到最慢的方法,定位性能瓶颈;
稳定性监控发现失败次数多的接口,提前预警;
容量评估统计高频调用方法,辅助系统扩容决策;
问题排查结合时间段筛选,精确定位问题发生时间;
趋势分析通过不同时间粒度的数据,分析接口性能趋势。
09
优势特点
轻量级部署无需外部依赖,单个 JAR 包即可运行;
即插即用添加依赖后自动启用,无需复杂配置;
资源友好采用分级采样策略,内存占用可控;
10
总结
通过 Spring Boot AOP + 分级采样 + 现代化前端,我们实现了一个功能完整的轻量级 APM 监控系统:
  • 支持方法级监控和时间段筛选
  • 提供直观的可视化界面和搜索功能
  • 具备良好的性能表现和稳定性
  • 开箱即用,适合中小型项目快速集成
它不是 SkyWalking、Pinpoint 的替代品,但作为单机自研的小型 APM 解决方案,在简单性和实用性之间取得了很好的平衡。对于不需要复杂分布式追踪,但希望有基础监控能力的项目来说,这是一个不错的选择。
  • https://github.com/yuboon/java-examples/tree/master/springboot-api-dashboard
END
PS:防止找不到本篇文章,可以收藏点赞,方便翻阅查找哦。



往期推荐



13 秒插入 30 万条数据,这才是批量插入正确的姿势!

7款颜值当道的 Linux 系统

IDEA 源码阅读利器,你居然还不会?

面试官:说一下SSO 单点登录和 OAuth2.0 的区别

SpringBoot 实现无痕调试注入器,线上问题定位的新利器

开源项目 | 一款强大的桌面远程控制软件


【声明】内容源于网络
0
0
终码一生
开发者聚集地。分享Java相关开发技术(JVM,多线程,高并发,性能调优等),开源项目,常见开发问题和前沿科技资讯!
内容 1876
粉丝 0
终码一生 开发者聚集地。分享Java相关开发技术(JVM,多线程,高并发,性能调优等),开源项目,常见开发问题和前沿科技资讯!
总阅读919
粉丝0
内容1.9k