作者简介
王雪
建信金融科技有限责任公司极速工场总经理,主要从事密码研究与开发工作。
李武璐
建信金融科技有限责任公司极速工场工程师,主要从事密码研究与开发工作。
李原
建信金融科技有限责任公司极速工场工程师,主要从事隐私计算技术在金融场景分析与应用的研究工作。
何林芳
建信金融科技有限责任公司极速工场工程师,主要从事隐私计算产品设计工作。
刘春伟
建信金融科技有限责任公司极速工场工程师,主要从事隐私计算技术架构与开发工作。
李思思
建信金融科技有限责任公司极速工场工程师,主要从事隐私计算相关研究与生态合作工作。
论文引用格式:
王雪, 李武璐, 李原, 等. 隐私计算在普惠金融领域的应用研究[J]. 信息通信技术与政策, 2022,48(5):53-59.
隐私计算在普惠金融领域的应用研究
王雪 李武璐 李原 何林芳 刘春伟 李思思
(建信金融科技有限责任公司极速工场,北京 100034)
摘要:为推动普惠金融业务更好地开展,跨机构、跨行业之间的数据融合必不可少,隐私计算技术实现数据可用不可见、数据不动价值动方面具有非常显著的优势,在金融行业尤其是普惠金融方面的应用场景广泛。对多源数据融合对于普惠金融发展的作用和意义,以及隐私计算技术在普惠金融业务链条中的主要应用场景和实践进行了介绍,并对目前技术发展面临的挑战进行了阐述。
关键词:普惠金融;隐私计算;金融;数据融合
中图分类号:TP309.2 文献标志码:A
引用格式:王雪, 李武璐, 李原, 等. 隐私计算在普惠金融领域的应用研究[J]. 信息通信技术与政策, 2022,48(5):53-59.
DOI:10.12267/j.issn.2096-5931.2022.05.007
0 引言
根据国务院的定义,普惠金融是指立足机会平等要求和商业可持续原则,以可负担的成本为有金融服务需求的社会各阶层和群体提供适当、有效的金融服务[1]。因此,包括小微企业、农民、城镇低收入人群、贫困人群和残疾人、老年人等在内的特殊群体都是我国普惠金融的重要服务对象,尤其是在新冠肺炎疫情冲击下,大量小微企业、个体工商户及新型农业主体出现现金流紧张,金融资源配置仍存在不合理不平衡不充分的情况。因此,国家大力倡导“深化金融供给侧结构性改革,增强金融普惠性”,中国银行保险监督管理委员会也对商业银行的普惠贷款业务提出了“两增两控”目标[2]。同时,金融系统为坚决贯彻党中央、国务院决策部署,强化稳企业保就业金融支持,致力于实现中小微企业融资量增、面扩、价降、提质,满足小微企业、高新技术企业、新型农业主体的合理融资需求,为我国实体经济进一步恢复发展提供有力支撑,在国家和市场的双重需求之下,普惠金融业务成为各商业银行的重要发力点。
普惠金融业务的开展,金融机构面临最核心的挑战在于:一是风险管控上,小微企业、个体工商户、新型农业主体受大环境影响较大,经营不稳定,缺乏有效抵质押物,同时缺乏标准的可用于信用风险评价的信息,各类信息分散于社会各个层面;二是经营成本管控上,相较大型企业,小微企业、个体工商户、新型农业主体贷款需求更加小额分散,且经营规范化较低,财务制度不健全,人员结构不稳定,获客与运营成本更高。因此,加速释放数据要素潜力、赋能普惠金融发展就成为了重中之重。
1 多源数据融合对于普惠金融发展的作用和意义
小微企业及个体工商户作为我国经济的“毛细血管”,在GDP、税收、技术创新和就业方面有显著贡献。新型农业主体作为我国乡村振兴的“主力军”,在推动城乡区域协调发展,不断优化经济布局方面作出了突出贡献[3]。普惠金融作为小微企业、个体工商户、新型农业主体融资的重要手段,需要继续加强信贷投放,继续执行贷款延期还本付息和信用贷款支持政策,控制其综合融资成本。当前,普惠金融常见的业务开展模式主要为依靠单类外部数据的线上贷款的模式。该模式为依赖税务、电力、保单等具有经营、金融属性的数据,通过流程再造、集约经营,实现业务线上一站式办理的模式。此种模式依赖的数据源单一,数据对接相对容易,但是存在数据缺失或者失真导致的风险,同时该模式下资金用途也难以管控。另外,有逐步发展出的场景化普惠金融,主要围绕“衣食住行养医”等民生场景,从源头核心嵌入产业链,依托产业互联网实现线上批量化获客。这类模式可以有效管控资金用途控制风险。无论哪种线上业务的开展,都需要多源的外部数据,如政务数据、各类行业产业数据、各类经营主体数据等。
随着国务院将数据纳入第五大生产要素的改革方向和相关体制机制建设的不断落地[4],数据安全与隐私保护相关法规政策的不断趋严,出于安全、隐私、合规方面的限制,机构间难以对各方数据进行有效融合与利用,因此产生了日益严重的“数据孤岛”问题,造成了各方的数据资源和价值无法充分被发掘的现状。为了解决在数据安全隐私前提下的数据融合与价值发掘问题,隐私保护计算技术提供了新的信息共享方式,也逐渐受到各方的关注,先后出现了联邦学习、多方安全计算、可信执行环境、差分隐私等技术路线,为多方数据搭建安全融合通道,实现数据不出管理域,可用不可见[5],有助于在保护各方数据隐私,确保业务在合法合规的前提下进行数据隐私融合计算,保障数据安全隐私,提升数据应用能力与效率。
2 隐私计算技术在普惠金融领域的应用场景与实践分析
隐私计算技术主要是通过对交互的标签、特征、梯度等数据进行密码学处理,保证密文接收方或外部第三方无法恢复明文,同时直接基于密文进行计算并获得正确的计算结果,从而达到各参与方无需共享数据资源即可达成相关目的。从2019年开始,隐私计算技术便开始尝试应用于小微企业、个体工商户、新型农业经营主体的普惠金融服务领域当中。金融机构作为普惠金融业务的提供方也是实际场景的应用方,业务环节主要覆盖获客、申请、准入、授信、监控、催收、处置等全流程,需要融合多方外部数据加强在精准营销、欺诈监测、风险监控等典型应用场景方面的实践,进而提升模型和策略的应用效果,改善普惠金融服务的成本、效率和体验等。下面针对具体应用场景实践展开论述。
2.1 精准营销
近年来,随着普惠金融产品逐步线上化,营销业务也步入了智能时代,普惠金融所涉及的客群金融交易活跃,金融需求多样,而在实际营销中可直接获取数据维度不丰富、关联企业间数据未打通,导致金融机构无法精准筛选客户并提供满足客户需求的产品,因此需要引入外部数据开发智能化营销模型,促进客户价值挖掘提升。
针对以上痛点,目前金融机构在逐步探索集团内部的营销推广,并与地方政府机构合作,结合自身获取的金融属性相关数据,融合地方辖区企业的经营、司法、税务等信息,进一步丰富银行客户标签维度,合理定位客群,节省营销成本(见图1)。由于地方政务数据中包含辖区全量企业信息,能够覆盖银行普惠金融业务营销的客群,且与银行方获取的企业特征方面重叠度不高,因此目前金融机构在具体实践中通过与地方政府大数据中心合作,融合企业基本信息、征信信息、社保及公积金缴费信息、纳税信息、水电气使用信息等首先建立近400 个企业特征标签,进而通过单变量回归进行初筛,再通过业务含义及变量相关性进行进一步筛选,最终形成特征短清单后使用纵向联邦学习的方法[6]开展智能营销模型训练和预测,捕捉不同类别企业的偏好特征,丰富了普惠金融客群特征的同时也定位了目标企业,最终达成为相应企业提供适配普惠金融产品的重点营销目的,助力客户业务价值提升,在实际营销中针对经营情况适中的企业响应率相比单边模型提升约15%~20%,模型区分度AUC和KS等指标提升约5%~10%。
本文刊于《信息通信技术与政策》2022年 第5期
主办:中国信息通信研究院
《信息通信技术与政策》官网开通啦!
为进一步提高期刊信息化建设水平,为广大学者提供更优质的服务,我刊于2020年11月18日起正式推出官方网站,现已进入网站试运行阶段。我们将以更专业的态度、更丰富的内容、更权威的报道,继续提供有前瞻性、指导性、实用性的优秀文稿,为建设网络强国和制造强国作出更大贡献!
推荐阅读
你“在看”我吗?

