如今,氮化镓是固态射频功率应用领域无可争议的冠军。它已经在雷达和5G无线技术中得到了应用,很快将在电动汽车的逆变器中普及。你甚至可以买到基于氮化镓的USB壁式充电器,它们体积小且功率非常高。
不过,还有比它更好的东西吗?有能让射频放大器变得更强大更高效的装置吗?有能让电力电子设备体积变得更小,让飞机和汽车上使用的电子设备更轻、更小的装置吗?我们能找到带隙更大的导电材料吗?
是的,我们可以。事实上,许多材料都有更大的带隙,但量子力学的独特性意味着,几乎所有这些材料都不能用作半导体。不过,透明导电氧化物氧化镓(Ga2O3)是一个特例。

氧化镓的别名是三氧化二镓,氧化镓(Ga2O3)是一种宽禁带半导体,Eg=4.9eV,其导电性能和发光特性长期以来一直引起人们的注意。

图:β相氧化镓晶体结构
Ga2O3是一种透明的氧化物半导体材料,在光电子器件方面有广阔的应用前景 ,被用作于Ga基半导体材料的绝缘层,以及紫外线滤光片。它还可以用作O2化学探测器。
氧化镓的性能优势

砷化镓、氮化镓、氧化镓、硅、碳化硅特性比较 / IEEE
除了材料性能优异如带隙比碳化硅和氮化镓大,利用 Ga 2 O 3 作为半导体材料的主要原因是其生产成本较低。
随着氧化镓晶体生长技术的突破性进展,氧化稼和蓝宝石一样,可以从溶液状态转化成块状(Bulk)单结晶状态。
可以通过运用与蓝宝石晶圆生产技术相同的EFG(Edge-defined Film-fed Growth)方法,做出氧化镓晶圆,成熟的生产工艺会大幅度降低生产成本。
因为拥有如此多的优势,氧化镓被看作一个比氮化镓拥有更广阔前景的技术。
氧化镓半导体的产业现状
在SiC方面或GaN方面,从产业链分工的角度来看,目前Cree、Rohm、ST都已形成了SiC衬底→外延→器件→模块垂直供应的体系。而Infineon、Bosch、OnSemi等厂商则购买衬底,随后自行进行外延生长并制作器件及模块。
我国其实开展氧化镓研究已经十余年,但是直到近年来46所的技术突破实现了距离产业化”一步之遥“,从公开资料能了解到目前从事GaO材料和器件研究的单位和企业,主要是中电科46所、西安电子科技大学、上海光机所、上海微系统所、复旦大学、南京大学等高校及科研院所,和科技成果转化的公司北京镓族科技、杭州富加镓业。
图:在电流和电压需求方面Si,SiC,GaN和GaO功率电子器件的应用
1、日本
据日本媒体2020年9月报道,日本经济产业省(METI)正准备为致力于开发新一代低能耗半导体材料“氧化镓”的私营企业和大学提供财政支持。METI将为2021年留出大约2030万美元的资金,预计未来5年的投资额将超过8560万美元。METI认为,日本公司将能够在本世纪20年代末开始为数据中心、家用电器和汽车供应基于氧化镓的半导体。一旦氧化镓取代目前广泛使用的硅材料,每年将减少1440万吨二氧化碳的排放。
资料显示, 日本功率元件方向的氧化镓研发始于以下三位:日本国立信息通信技术研究所(NICT:National Institute of Information and Communications Technology)的东胁正高先生、京都大学的藤田静雄教授、田村(Tamura)制作所的仓又朗人先生。
NICT的东胁先生于2010年3月结束在美国大学的赴任并返回日本,以氧化镓功率元件作为新的研发主题并进行构想。
京都大学的藤田教授于2008年发布了氧化镓深紫外线检测和Schottky Barrier Junction、蓝宝石(Sapphire)晶圆上的外延生长(Epitaxial Growth)等研发成果后,又通过利用独自研发的“雾化法”薄膜生产技术(Mist CVD法)致力于研发功率元件。
仓又先生在田村(Tamura)制作所负责研发LED方向的氧化镓单晶晶圆,并将应用在功率半导体方向。
三人的接触与新能源·产业技术综合开发机构(NEDO)于2011年度提出的“节能革新技术开发事业—挑战研发(事前研发一体型)、超耐高压氧化镓功率元件的研发”这一委托研发事业有一定关联,接受委托的是NICT、京都大学、田村制作所等。可以说,由这一委托开启了GaO功率元件的正式研发。
2011年,京都大学投资成立了公司“FLOSFIA”。在2015年,NICT和田村制作所合作投资成立了氧化镓产业化企业“Novel Crystal Technology”,简称“NCT”。现在,两家公司都是日本氧化镓研发的中坚企业,必须强调的是,这也是世界上仅有的两家能够量产GaO材料及器件的企业,整个业界已经呈现出“All Japan”的景象。
(1)Flosfia
2011年由京都大学投资成立,在2017年获得B轮融资750万欧元(500万英镑),2018年三菱重工和电装等大企业已经联名参与了其C轮融资,累计融资接近5亿人民币。
在对成本要求严格的电动汽车、“廉价化”的家电等数码机器方面,碳化硅和氮化镓即使性能卓越,制造商也难以接受其价格,成本问题阻碍着产业界对新半导体的材料的导入。FLOSFIA公司的“喷雾干燥法”(MistDry)先将氧化镓溶解于某种几十种配方混合而成的溶液里,然后将溶液以雾状喷在蓝宝石衬底上,在蓝宝石基板上的溶液干燥之前,就形成了氧化镓结晶。这样通过从液态直接获得GaO衬底,不需要高温、超洁净的环境,实现了超低成本制造GaO。

图:MistCVD原理图( Electronics Weekly)
这种溶液常温下是液体,蒸发温度不需要达到1,500度,几百度就足够,而且制作结晶的环境是在常温空气中,没有任何高成本的环节。如果考虑做小尺寸,有望可以制造出和硅同样价格、比硅性能更好的半导体。

图:直径为4英寸的蓝宝石衬底上形成的Ga 2 O 3薄膜(FLosfia官网)
从官网可以看到,公司在2015年所首发的肖特基势垒二极管(SBD)已经送样,而其521V耐压器件的导通电阻仅为0.1mΩ/cm²,855V耐压的SBD导通电阻仅为0.4mΩ/cm²,损耗仅为SiC的1/7,由此足以见证新材料器件的优势。

图:Flosfia制作的超低导通电阻SBD(FLosfia官网)
因为材料属性的原因,有专家认为用氧化镓无法制造P型半导体。但京都大学的Shizuo Fujita与Flosfia合作在2016年成功开发出了具有蓝宝石结构的GaO常关型晶体管(MOSFET)。

图:常关GaO MOSFET的IV曲线(FLosfia官网)
常关型MOSFET 的第一个α相GaO由N +源/漏极层、p型阱层、栅极绝缘体和电极组成。从IV曲线外推的栅极阈值电压为7.9V。该器件由新型p型刚玉半导体制成,其起到反型层的作用。团队在2016年发现p型氧化铱Ir 2 O3,终于制作出了常关GaO MOS。

图:常关型GaO MOSFET器件横截面示意图(FLosfia官网)

图:常关型GaO MOSFET的光学显微照片(FLosfia官网)
FLOSFIA总部位于日本京都,专门从事雾化学气相沉积(CVD)成膜。利用氧化镓的物理特性,FLOSFIA致力于开发低损耗功率器件。该公司成功开发了一种SBD,其具有目前可用的任何类型的最低特定导通电阻,实现与降低功率相关的技术,比以前减少了90%。
2018年,电装与FLOSFIA宣布合作研发新一代功率半导体设备,旨在降低电动车用逆变器的能耗、成本、尺寸及重量。
同样也是在2018年,电装与Flosfia决定共同开发面向车载应用的下一代Power半导体材料氧化镓(α相GaO)。据电装表示,通过这两家公司对面向车载的氧化镓(α相GaO)的联合开发,电动汽车的主要单元PCU的技术革新指日可待。此技术将对电动汽车的更轻量化发展及节约能源降低耗电起到积极作用,从而实现人、车、环境和谐共存。

图:Flosfia GaO评估板(集微网)
据EE Times Japan报道,FLOSFIA在2019年12月11日-13日召开的“SEMICON Japan 2019”上展示了GaO功率器件和评估板,并计划于2020年进行全球范围内首次GaO肖特基势垒二极管的量产。FLOSFIA方面称目前常关型GaO MOSFET的沟道迁移率已远远超过了商用SiC,让这项技术和产品有望应用于需要安全性的各种电源中,并有望应用在电动汽车和消费级快充中,和SiC拥有同等水平或以上性能的GaO MOSFET价格也会更便宜。Flosfia计划2021年实现GaO器件量产,业界正拭目以待。
(2)Novel Crystal Technology(以下简称NCT)
NCT成立于2015年,公司所采用的方案是基于HVPE生长的GaO平面外延芯片,他们的目标是加快超低损耗、低成本β相GaO功率器件的产品开发。
资料显示,NCT已经成功开发,制造和销售了直径最大为4英寸的氧化镓晶片。而在2017年11月,NCT与田村制作所(Tamura Corporation)合作成功开发了世界上第一个由氧化镓外延膜制成的沟槽型MOS功率晶体管,其功耗仅为传统硅MOSFET的1/1000。

图:氧化镓沟槽MOS型功率晶体管的示意图(NCT官网)
按照他们的规划,从2019财年下半年开始,NCT将开始提供击穿电压为650V的β相GaO沟槽型SBD的10-30A样品。他们还打算从2021年开始推进大规模生产的准备工作。公司还致力于快速开发100A级别的β相GaO功率器件。
此外,日本早稻田大学采用FZ法生长出β-Ga2O3单晶。在单晶生长过程中通入适量O2抑制β-Ga2O3分解,晶体生长速度为1~5mm/h,直径最大为2.54cm,长度约为50mm。
2、美国
(1)空军研究室(AFRL)
美国空军研究室在2012年注意到了NICT的成功,研究员Gregg Jessen领导的团队探索了GaO材料的特性,结果显示,GaO材料的速度和高临界场强在快速功率开关和射频功率应用中具有颠覆性的潜力。在这个成果的激励下,Jessen建立了美国的GaO研究基础,获得了首批样品。

图:AFRL制作的2英寸带有GaN外延层的Synoptics 氧化镓晶体管(Compound Semiconductor)
此后,Kelson Chabak接任团队负责人,他们从唯一的商业供应商Tamura采购了衬底,并联系了Tamura投资的NCT购买外延片,同时也从德国莱布尼茨晶体生长研究所(IKZ)采购外延片。
Chabak表示:“我们之所以能够成为该领域的领导者,是因为我们能够尽早获得材料”。
AFRL在2016年报告了一个有IKZ外延片制作的MOSFET,该器件在0.6um的G-S漂移区内承载电压高达230V,意味着平均临界场强达到了3.8MV/cm,大约是4倍于GaN的临界场强,成为了“燎原之火”。
更重要的是,Chabak指出GaO的低热导率并不会阻碍其成为主流射频功率器件的因素,并用一些模型证明了倒装芯片技术和背面减薄技术相结合,可以让器件热阻达到接近SiC的水平。
AFRL目前致力于在短期内突破电子束光刻技术引入到制程工艺中,并将晶体管的尺寸降到um以下,这样将可使器件具备非常高的速度和击穿电压,成为快速开关应用的有力竞争产品。
AFRL正在试图突破GaO外延技术,并且资助了诺格公司的子公司Synoptics开发GaO的衬底生长技术,当各个环节具备之后,美国将是第二个彻底实现全产业链国产化的国家。
(2)美国纽约州立大学布法罗分校(UB)
据外媒报道,2020年4月,美国纽约州立大学布法罗分校(the University at Buffalo)正在研发一款基于氧化镓的晶体管,能够承受8000V以上的电压,而且只有一张纸那么薄。该团队在2018年制造了一个由5微米厚(一张纸厚约100微米)的氧化镓制成的MOSFET,击穿电压为1,850 V。该产品将用于制造更小、更高效的电子系统,应用在电动汽车、机车和飞机上。
3、德国
关于德国开展氧化镓研究的报道较少,目前仅看到德国莱布尼茨晶体生长研究所(IKZ)2009年开始研发和生长GaO晶体,使用提拉法,采用铱金坩埚,包括活动的铱金后加热器,生长出的晶体直径为2英寸,长度为40~65mm,晶体的结晶特性较好。此外,其也为美国AFRL供应了GaO外延片。
4、中国
我国其实开展氧化镓研究已经十余年,但是直到近年来46所的技术突破才实现了距离产业化“一步之遥”,从公开资料能了解到目前从事GaO材料和器件研究的单位和企业,主要是中电科46所、西安电子科技大学、上海光机所、上海微系统所、复旦大学、南京大学等高校及科研院所,科技成果转化的公司有北京镓族科技、杭州富加镓业。国内团队未见关于GaO MOS的报道。
(1)中电科46所
据观察者网在2019年2月的报道,中国电科46所经过多年氧化镓晶体生长技术探索,通过改进热场结构、优化生长气氛和晶体生长工艺,有效解决了晶体生长过程中原料分解、多晶形成、晶体开裂等问题,采用导模法成功在2016年制备出国内第一片高质量的2英寸氧化镓单晶,在2018年底制备出国内第一片高质量的4英寸氧化镓单晶。报道指出,中国电科46所制备的氧化镓单晶的宽度接近100mm,总长度达到250mm,可加工出4英寸晶圆、3英寸晶圆和2英寸晶圆。这也是目前为止国内唯一能够达到该尺寸的记录保持者。
(2)西电大学/微系统所
据中国科学院上海微系统与信息技术研究所报道,在2019年12月,中国科学院上海微系统与信息技术研究所研究员欧欣课题组和西安电子科技大学郝跃课题组教授韩根全携手,在氧化镓功率器件领域取得了新进展。欧欣课题组和韩根全课题组利用“万能离子刀”智能剥离与转移技术,首次将晶圆级β相GaO单晶薄膜(400nm)与高导热的Si和4H-SiC衬底晶圆级集成,并制备出高性能器件。报道指出,该工作在超宽禁带材料与功率器件领域具有里程碑式的重要意义。首先,异质集成为GaO晶圆散热问题提供了最优解决方案,势必推动高性能GaO器件研究的发展;其次,该研究将为我国GaO基础研究和工程化提供优质的高导热衬底材料,推动GaO在高功率器件领域的规模化应用。
(3)复旦大学
在2020年6月,复旦大学方志来团队在p型氧化镓深紫外日盲探测器研究中取得重要进展。报道表示,方志来团队采用固-固相变原位掺杂技术,同时实现了高掺杂浓度、高晶体质量与能带工程,从而部分解决了氧化镓的p型掺杂困难问题。
(4)北京镓族科技
资料显示,北京镓族科技有限公司成立于2017年年底,是国内首家、国际第二家专业从事第四代(超宽禁带)半导体氧化镓材料开发及应用产业化的高科技公司,是北京邮电大学的唐为华老师从2011年以来致力于氧化镓材料及器件形成科研成果的产业化平台。
公司研发和生产基于新型超宽禁带半导体材料氧化镓的高质量单晶与外延衬底、高灵敏度日盲紫外探测器件、高频大功率器件,已与合作单位一起已经实现1000V耐压的肖特基二极管模型制作,并已经实现5000V耐压的MOSFET模型制作,开发出氧化镓基日盲紫外探测器分立器件和阵列成像器件,为深紫外光电器件提供了良好解决方案,可支持极弱火焰和极弱电弧实时检测等,并已推出系统化模块。公司已申请40余项专利,完成了产业中试的前期技术、人员、软硬件等量产化要求的所有准备工作。公司拥有厂房面积1500平米,涵盖完整的产业中试产线,具备研发和小批量生产能力,初步构建了氧化单晶衬底、氧化镓异质/同质外延衬底生产和研发平台。未来将不断完善晶体生长、晶体加工、外延薄膜性能测试、微纳加工、联合研发等六大平台搭建。
(5)杭州富加镓业
据官网信息,公司成立于2019年12月,注册资金500万,是由中国科学院上海光学精密机械研究所与杭州市富阳区政府共建的“硬科技”产业化平台——杭州光机所孵化的科技型企业。
富加镓业专注于宽禁带半导体材料研发,公司核心创始人具有中科院博士、剑桥大学博士等材料领域的深厚背景,团队成员主要来自中国科学院、美英海归等业内资深人才,研发人员中硕士以上比例达到80%;公司厂房面积八千余平米,拥有多台大尺寸导模法晶体生长炉、多气氛晶体退火炉、高精密抛光机等仪器设备,为公司的发展提供了基础支撑和持续创新动力硬件保证。
富加镓业最初技术来源于中科院上海光机所技术研发团队,该团队是我国最早从事氧化镓晶体生长的团队,从04年开始即开展研究。富加镓业专业从事氧化镓单晶材料设计、模拟仿真、生长及性能表征等工作,形成了较鲜明的特色和优势。我们注重知识产权保护和氧化镓相关基础探索研究工作,在全球范围内对氧化镓晶体材料生长及上下游应用领域的专利进行布局,申请进入欧盟、美国、日本、韩国、新加坡等国家。团队的氧化镓晶体材料及器件基础研究成果,多篇科研论文已发表在国际顶级学术期刊上,与全球科研工作者共享最新研究成果,共同推动全球第四代半导体相关行业的发展。
(6)其他
山东大学采用金属有机化学气相沉积(MOCVD)法研究了β相GaO薄膜的生长及其光学性质。北京邮电大学、电子科技大学、中山大学也分别独立开展了β相GaO薄膜及日盲紫外探测器的研究,已取得了一些重要的研究成果,但基本未见在晶体材料方面的相关报道。
5、其他
印度的Raja Ramanna先进技术中心采用类似EFG的方法,生长出直径5~8mm、长度40~50mm的低缺陷β相GaO单晶,(400)面XRC半高宽约为0.028°。
葡萄牙圣地亚哥大学采用激光加热浮区法生长出了离子掺杂和非掺的低缺陷β相GaO晶体光纤。
随着电动车和便携式用电的需求成为主流,功率器件的重要程度日益提高,而日本已经明显在第四代半导体的氧化镓材料方面处于领先优势,日本半导体界也将GaO作为日本半导体产业“复兴的钥匙”,已在国内掀起研发和应用的热潮。与此同时,美国、中国、欧洲等也正在试图追赶,可以想到的是,美日双方从材料供应到技术合作必然要比中日合作更加深入,这场功率器件竞赛已然拉开帷幕,而中国将可能独自前行。
来源:第三代半导体联合创新孵化中心、悦智网、芯魔-进化半导体、微波射频网
| 1.0mm | 1.85mm | 2.4mm | 2.92mm |
| 3.5mm | N头 | SMA | SMP |
| SSMA | SSMP | 力矩扳手 | 接头防护 |
贴片天线的HFSS和CST仿真对比
HFSS-API入门第二弹:基本形状和操作
巧用HFSS脚本录制功能
平面口径天线简谈
贴片天线的特征模分析及其应用
模拟和矢量信号源进阶使用技巧
IQ正交调制器基础知识和测试详解
学个Antenna:Wi-Fi双频金属中框天线
学个Antenna:手机天线之宽带匹配原理
学个Antenna:手机天线入门


