这个想法的精髓在于,平行四边形的面积公式是“底乘以高” (Area = base × height)。
-
在我们的图中,三个平行四边形(蓝色的、绿色的、红色的轮廓)共享一个共同的底,这个“底”就是向量 的长度 ||||。 -
因此,它们的面积之所以能相加,根本原因在于它们的高是相加的。 -
我们将画出一条垂线,作为测量“高”的标尺,并清晰地展示 。
可视化释义
这张图在上一张图的基础上,增加了以下核心元素:
-
灰色虚线 (高度轴): 我们画了一条穿过原点且与基准向量 垂直的直线。这条线可以看作是测量高度的“轴”或“标尺”。
-
橙色高度段:
-
: 从 u的顶端向高度轴作垂线,得到的橙色线段 代表了蓝色平行四边形的高。 -
: 从 v的顶端 (即a₁的顶端) 向那条平移过的基线作垂线,得到的橙色线段 代表了绿色平行四边形的高。 -
高度的拼接: 我们将这两段高 和 沿着高度轴并列放置。可以清晰地看到:
-
和 两段高首尾相连。 -
它们拼接后的总长度,精确地等于从合成向量 的顶端到原点基线的高度。

