01
共轴式直升机与单旋翼带尾桨直升机的主要区别是采用上下共轴反转的两组旋翼用来平衡旋翼扭矩,不需尾桨。在结构上,由于采用两副旋翼,与相同重量的单旋翼直升机相比,若采用相同的桨盘载荷,其旋翼半径仅为单旋翼直升机的70%。单旋翼直升机的尾桨部分必须超出旋翼旋转面,尾桨直径约为主旋翼的16% ~ 22%,这样,假设尾桨紧邻旋翼桨盘,则单旋翼直升机旋翼桨盘的最前端到尾桨桨盘的最后端是旋翼直径的1.16 ~ 1.22倍。由于没有尾桨,共轴式直升机的机身部分一般情况下均在桨盘面积之内,其机体总的纵向尺寸就是桨盘直径。这样,在桨盘载荷、发动机和相同的总重下,共轴双旋翼直升机的总体纵向尺寸仅为单旋翼直升机的60% 左右。
共轴式直升机的机身较短,同时其结构重量和载重均集中在直升机的重心处,因而减少了直升机的俯仰和偏航的转动惯量。
在10t 级直升机上,共轴式直升机的俯仰转动惯量大约是单旋翼直升机的一半,因此,共轴式直升机可提供更大的俯仰和横滚操纵力矩。并使直升机具有较高的加速特性。
由于没有尾桨,共轴式直升机消除了单旋翼直升机存在的尾桨故障隐患和在飞行中因尾梁的振动和变形引起的尾桨传动机构的故障隐患,从而提高了直升机的生存率。
由于采用上下两副旋翼,增加了直升机的垂向尺寸,两副旋翼的桨毂和操纵机构均暴露在机身外。两副旋翼的间距与旋翼直径成一定的比例,以保证飞行中上下旋翼由于操纵和阵风引起的极限挥舞不会相碰。两旋翼间的非流线不规则的桨毂和操纵系统部分增加了直升机的废阻面积,因而,共轴式直升机的废阻功率一般来说大于单旋翼带尾桨直升机的废阻功率。
共轴式直升机一般采用双垂尾以增加直升机的航向操纵性和稳定性。
一般来说,共轴式直升机绕旋翼轴的转动惯量大大小于单旋翼带尾桨直升机,因而,航向的操纵性好于单旋翼带尾桨直升机,而稳定性相对较差;由于共轴式直升机的机身较短,故增加平尾面积和采用双垂尾来提高直升机的纵向和航向稳定性。共轴式直升机的垂尾的航向操纵效率只在飞行速度较大时方起作用。
02
共轴式直升机具有合理的功率消耗(无用于平衡反扭矩的尾桨功率消耗),优良的操纵性、较小的总体尺寸等特点。与单旋翼带尾桨直升机相比,共轴式直升机的主要气动特点为:共轴式直升机具有较高的悬停效率;没有用于平衡反扭矩的尾桨功率损耗;尾浆在起飞、悬停状态下的功率消耗为7% ~ 12%;空气动力对称;具有较大的俯仰、横滚控制力矩。
据卡莫夫设计局资料称,通常共轴双旋翼直升机的悬停效率要比单旋翼带尾桨直升机高出17% ~ 30%。由于上述的原因,在相同的起飞重量、发动机功率和旋翼直径下,共轴式直升机有着更高的悬停升限和爬升率。
共轴式直升机的另一个重要特性是随着升限增高,其航向转弯速度保持不变甚至有所增加。这是由于共轴式直升机不需要额外的功率用于航向操纵,因而改善了航向的操纵效率。增加同样的拉力所需的扭矩增量随悬停高度的增加而增加,因此,对单旋翼直升机来说,为平衡反扭矩所需的尾桨功率也需要增加,在尾桨功率供应不足的情况下使航向操纵效率减小。而共轴式直升机不存在这样的问题。
共轴双旋翼的平飞气动特性与单旋翼也有不同,资料表明,在相同拉力和旋翼直径下,刚性共轴双旋翼的诱导阻力比单旋翼低20% ~ 30%。
由于操纵系统部分和上下旋翼桨毂这些非流线形状部件的数量和体积大于单旋翼直升机并暴露在气流中,因而共轴式直升机的废阻面积大于单旋翼直升机。共轴式直升机在悬停、中低速飞行时的需用功率小于单旋翼直升机,随速度增加,需用功率逐渐增大至大于单旋翼直升机,这一特性决定了共轴式直升机有较大的实用升限、较大的爬升速度、更大的续航时间。而单旋翼直升机则有较大的平飞速度、较大的巡航速度和飞行范围。由于共轴式直升机具有特殊的操纵系统构件,两旋翼必须保持一定的间距,因此要将废阻面积降低到单旋翼直升机的水平很困难。
共轴式直升机在各种飞行状态下均不同程度地存在着气动干扰,表现为上旋翼对下旋翼的下洗流的影响以及下旋翼对上旋翼的流态的影响,实验和理论研究表明,在悬停和小速度前飞状态下,旋翼的相互影响使得下旋翼的下洗速度比单旋翼的要大得多,而上旋翼的下洗速度与单旋翼几乎相同,略大一些。上旋翼的滑流流管在下旋翼处收缩至Rs(Rs<R),即下桨盘只在半径Rs以内的区域受到上旋翼下洗流的影响,而上桨盘完全处于受下桨盘作用的滑流里。在垂直爬升时,由于上下旋翼的气动干扰,每组旋翼的轴向速度包括直升机的爬升速度、自身诱导速度和来自另一旋翼的诱导干扰速度。
因此,无论是上旋翼还是下旋翼,在气动力估算时均不能用估算单旋翼的方法进行旋翼特性估算。早期共轴双旋翼的气动计算是按等效实度的单旋翼气动模型计算的,如上下旋翼共4片桨叶,则按4 片相同几何参数的单旋翼来估算。后来发现这种方法与实验结果相差较大,而且由此得出的结果导致了操纵系统的设计余度不够而出现飞行事故。因此,无论是前飞还是悬停,简单的动量法已不能用于共轴双旋翼的气动计算。应当用比较符合旋翼流场物理现象的涡流理论或计算流体力学解决共轴双旋翼的气动计算问题。
由于上下旋翼的诱导速度不同,上下旋翼的气动特性也不同。表现在当上下旋翼的升力相同时,上下旋翼的扭矩不同;上下旋翼的扭矩相同时,上下旋翼的升力不同。并且上下旋翼的拉力系数和阻力系数以及上下旋翼的扭矩均随飞行状态和飞行速度而变化。
一般来说,扭矩相同的情况下,共轴双旋翼的上下旋翼在悬停状态的拉力之比为CTlow/CTupp=0.85左右,随着前飞速度的增加,在μ≥1.5时,CTupp=1.05CTlow。
与单旋翼带尾桨直升机有所不同的是,共轴式直升机的航向操纵是通过改变上下旋翼总距来实现的。因此,在改变了上下旋翼的扭矩分配后,上下旋翼的升力也有所变化。其结果是,伴随着航向的变化直升机还有升降的变化。因此,这种航向与升降运动的耦合响应,必须通过总距操纵补偿来解决。
专题报告如下
一、警务航空
中国各地公安机关已于上个世纪90年代初开始装备警用直升机。1993年,我国第一支警务航空队—武汉市公安局警务航空队成立。截至到2019年底,全国已有24个省、自治区、直辖市、公安机关建立了40支航空警务队,配备警用直升机约67架,警航飞行员100多名。详见数据解析 | 我国警务航空机队一览表(不完全统计)
二、航空护林
2019年,农业共计完成飞行小时5.23万小时,飞行架次13.3万架次。包括人工降水、航空喷洒(撒)、气象探测、渔业飞行、使用具有特殊适航证的航空喷洒(撒)等。全年共计102家企业参与农业通航服务,平均飞行时间512.75小时。
三、空中游览
空中游览作业全年共计完成2.16万小时,飞行10.33万架次,搭载乘客22.86万人次。全国共有148家企业参与运营,平均飞行小时145.86小时。生产效率方面,平均每小时空中游览载客量平均值为10.6人,每个起降架次的载客量平均值为2.21人次。
四、商业模式探讨
图文来自于飞行邦,如需转载,请注明出处。

为了更好的传递海卡的品牌诉求、产品消息、市场动态,请长按二维码进行识别关注海卡航空微信订阅号,共享通航的美好未来。


