大数跨境
0
0

西安交大王玲&李涤尘等 | 一种联合机械刺激调控促进多孔PEEK植入物骨整合的结构设计策略

西安交大王玲&李涤尘等 | 一种联合机械刺激调控促进多孔PEEK植入物骨整合的结构设计策略 lucky出海
2025-04-09
0
导读:《生物设计与制造》(2023 IF=8.1),第8卷,第2期

内容简介


本研究论文聚焦一种联合机械刺激调控用以促进多孔PEEK植入物骨整合的结构优化设计策略。聚醚醚酮(PEEK)材料的生物惰性限制了其在临床上的广泛应用。已有研究表明多孔结构能有效改善PEEK植入物的骨整合能力,但其同时也显著地降低了植入物的机械性能,因而在临床应用中受到了限制。本研究基于对鼻旁区PEEK植入物生物力学行为的有限元分析,系统研究了3D打印PEEK多孔结构设计和在体机械刺激对假体服役安全性和界面骨生长状态的综合影响。研究通过联合调控植入物的孔隙大小和螺钉预紧力,在保证多孔PEEK植入物具有优异骨整合性能的同时,维持了其较高的安全系数。最终发现,600 µm的孔径和0.05 N·m的螺钉预紧力是保证植入物长期稳定性的最佳组合。在此最优条件下植入物的安全系数大于2,植入物-骨界面的预测有效骨生长面积百分比达到97%。本研究使用熔丝制造(FFF)3D打印技术制作了PEEK多孔植入物,并开展了多例临床应用。植入后3个月随访结果显示,3D打印多孔PEEK植入物的骨整合性能良好,植入后3个月的平均骨体积分数>40%。术后结果同时表明与实心PEEK植入物相比,多孔PEEK植入物具有更优的骨修复效果和长期稳定性。综上,本文系统研究了3D打印多孔PEEK植入物的结构设计与植入物强度、安全性和长期稳定性的关联,验证了其潜在的临床应用价值。


引用本文(点击最下方阅读原文可下载PDF)

Liu Y, Wang L, Zhang J, et al., 2025. A design strategy for long-term stability of porous PEEK implants by regulation of porous structure and in vivo mechanical stimulation. Bio-des Manuf 8(2):275–287. https://doi.org/10.1631/bdm.2400259

文章导读



图1 患者颌面骨与多孔PEEK植入物的三维模型及有限元模型


图2 不同植入物孔径和螺钉预紧力下颌面骨、PEEK植入物实心/多孔部分及固定螺钉的冯·米塞斯应力分布和最大应力


图3 不同植入物孔径和螺钉预紧力下植入物-骨界面与螺钉-骨界面的应变分布和有效骨生长面积


图4 3D打印多孔PEEK植入物的术中植入示意图及多孔/全实心PEEK假体术后CT影像


图5 基于术后CT数据的三维多孔假体及新生骨模型重建与成骨量化分析

参考文献

上下滑动以阅览

1. Hacherl CC, Patel NA, Jones K et al (2021) Characterizing adverse events of cranioplasty implants after craniectomy: a retrospective review of the federal manufacturer and user facility device experience database. Cureus 13(7):e16795. https://doi.org/10.7759/cureus.16795

2. Wang L, Yang CC, Sun CN et al (2022) Fused deposition modeling PEEK implants for personalized surgical application: from clinical need to biofabrication. Int J Bioprint 8(4):615. https://doi.org/10.18063/ijb.v8i4.615

3. Kauke-Navarro M, Knoedler L, Knoedler S et al (2024) Surface modification of PEEK implants for craniofacial reconstruction and aesthetic augmentation-fiction or reality? Front Surg 11:1351749. https://doi.org/10.3389/fsurg.2024.1351749

4. Sakkas A, Wilde F, Heufelder M et al (2017) Autogenous bone grafts in oral implantology—is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent 3(1):23. https://doi.org/10.1186/s40729-017-0084-4

5. Panayotov IV, Orti V, Cuisinier F et al (2016) Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med 27(7):118. https://doi.org/10.1007/s10856-016-5731-4

6. Zheng Z, Liu PJ, Zhang XM et al (2022) Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 16:100402. https://doi.org/10.1016/j.mtbio.2022.100402

7. Bartelstein MK, Van Citters DW, Weiser MC et al (2017) Failure of a polyaryletheretherketone-cobalt-chromium composite femoral stem due to coating separation and subsidence: a case report. JBJS Case Connect 7(4):e83. https://doi.org/10.2106/jbjs.Cc.16.00280

8. Evans NT, Torstrick FB, Lee CSD et al (2015) High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomater 13:159–167. https://doi.org/10.1016/j.actbio.2014.11.030

9. Yang Q, Zhang GC, Ma ZL et al (2015) Effects of processing parameters and thermal history on microcellular foaming behaviors of PEEK using supercritical CO2. J Appl Polym Sci 132(39):42576. https://doi.org/10.1002/app.42576

10. Zhao Y, Wong HM, Wang WH et al (2013) Cytocompatibility, osseointegration, and bioactivity of three-dimensional porous and nanostructured network on polyetheretherketone. Biomaterials 34(37):9264–9277. https://doi.org/10.1016/j.biomaterials.2013.08.071

11. Zheng JB, Zhao HY, Dong EC et al (2021) Additively-manufactured PEEK/HA porous scaffolds with highly-controllable mechanical properties and excellent biocompatibility. Mater Sci Eng C Mater Biol Appl 128:112333. https://doi.org/10.1016/j.msec.2021.112333

12. Wang HZ, Chen P, Wu HZ et al (2022) Comparative evaluation of printability and compression properties of poly-ether-ether-ketone triply periodic minimal surface scaffolds fabricated by laser powder bed fusion. Addit Manuf 57:102961. https://doi.org/10.1016/j.addma.2022.102961

13. Azami M, Moztarzadeh F, Tahriri M (2010) Preparation, characterization and mechanical properties of controlled porous gelatin/hydroxyapatite nanocomposite through layer solvent casting combined with freeze-drying and lamination techniques. J Porous Mater 17(3):313–320. https://doi.org/10.1007/s10934-009-9294-3

14. Gummadi SK, Saini A, Owusu-Danquah JS et al (2022) Mechanical properties of 3D-printed porous poly-ether-ether-ketone (PEEK) orthopedic scaffolds. JOM 74(9):3379–3391. https://doi.org/10.1007/s11837-022-05361-6

15. Du XY, Ronayne S, Lee SS et al (2023) 3D-printed PEEK/silicon nitride scaffolds with a triply periodic minimal surface structure for spinal fusion implants. ACS Appl Bio Mater 6(8):3319–3329. https://doi.org/10.1021/acsabm.3c00383

16. Spece H, Yu T, Law AW et al (2020) 3D printed porous PEEK created via fused filament fabrication for osteoconductive orthopaedic surfaces. J Mech Behav Biomed Mater 109:103850. https://doi.org/10.1016/j.jmbbm.2020.103850

17. Jia CQ, Zhang Z, Cao SQ et al (2023) A biomimetic gradient porous cage with a micro-structure for enhancing mechanical properties and accelerating osseointegration in spinal fusion. Bioact Mater 23:234–246. https://doi.org/10.1016/j.bioactmat.2022.11.003

18. Roskies M, Jordan JO, Fang DD et al (2016) Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. J Biomater Appl 31(1):132–139. https://doi.org/10.1177/0885328216638636

19. Cowin SC, Moss-Salentijn L, Moss ML (1991) Candidates for the mechanosensory system in bone. J Biomech Eng 113(2):191–197. https://doi.org/10.1115/1.2891234

20. Patel K, Brandstetter K (2016) Solid implants in facial plastic surgery: potential complications and how to prevent them. Facial Plast Surg 32(5):520–531. https://doi.org/10.1055/s-0036-1586497

21. Lee TY, Chung HY, Dhong ES et al (2019) Paranasal augmentation using multi-folded expanded polytetrafluorethylene (ePTFE) in the East Asian nose. Aesthet Surg J 39(12):1319–1328. https://doi.org/10.1093/asj/sjz103

22. Nocini PF, Boccieri A, Bertossi D (2009) Gridplan midfacial analysis for alloplastic implants at the time of jaw surgery. Plast Reconstr Surg 123(2):670–679. https://doi.org/10.1097/PRS.0b013e318196b958

23. Kang JF, Zhang J, Zheng JB et al (2021) 3D-printed PEEK implant for mandibular defects repair-a new method. J Mech Behav Biomed Mater 116:104335. https://doi.org/10.1016/j.jmbbm.2021.104335

24. Wang L, Kang JF, Sun CN et al (2017) Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants. Mater Des 133:62–68. https://doi.org/10.1016/j.matdes.2017.07.021

25. Sun CN, Wang L, Kang JF et al (2018) Biomechanical optimization of elastic modulus distribution in porous femoral stem for artificial hip joints. J Bionic Eng 15(4):693–702. https://doi.org/10.1007/s42235-018-0057-1

26. Wang D, Qu A, Zhou H et al (2016) Biomechanical analysis of the application of zygoma implants for prosthesis in unilateral maxillary defect. J Mech Med Biol 16(8):1640030. https://doi.org/10.1142/s0219519416400303

27. Miyamoto S, Ujigawa K, Kizu Y et al (2010) Biomechanical three-dimensional finite-element analysis of maxillary prostheses with implants. Design of number and position of implants for maxillary prostheses after hemimaxillectomy. Int J Oral Maxillofac Surg 39(11):1120–1126. https://doi.org/10.1016/j.ijom.2010.06.011

28. Zhang J, Li DC, Liu YJ et al (2022) Application of patient-specific PEEK implant for aesthetic considerations in paranasal augmentation. J Craniofac Surg 33(8):e877–e880. https://doi.org/10.1097/scs.0000000000008824

29. Monje A, Ravidà A, Wang HL et al (2019) Relationship between primary/mechanical and secondary/biological implant stability. Int J Oral Maxillofac Implants 34:s7–s23. https://doi.org/10.11607/jomi.19suppl.g1

30. Sharma N, Welker D, Aghlmandi S et al (2021) A multi-criteria assessment strategy for 3D printed porous polyetheretherketone (PEEK) patient-specific implants for orbital wall reconstruction. J Clin Med 10(16):3563. https://doi.org/10.3390/jcm10163563

31. Torstrick FB, Safranski DL, Burkus JK et al (2017) Getting PEEK to stick to bone: the development of porous PEEK for interbody fusion devices. Tech Orthop 32(3):158–166. https://doi.org/10.1097/bto.0000000000000242

32. Moiduddin K, Mian SH, Elseufy SM et al (2023) Polyether-etherketone (PEEK) and its 3D-printed quantitate assessment in cranial reconstruction. J Funct Biomater 14(8):429. https://doi.org/10.3390/jfb14080429

33. Belwanshi M, Jayaswal P, Aherwar A (2022) Mechanical behaviour investigation of PEEK coated titanium alloys for hip arthroplasty using finite element analysis. Mater Today Proc 56(5):2808–2817. https://doi.org/10.1016/j.matpr.2021.10.112

34. Kang JF, Wang L, Yang CC et al (2018) Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses. Biomech Model Mechanobiol 17(4):1083–1092. https://doi.org/10.1007/s10237-018-1015-x

35. Bružauskaitė I, Bironaitė D, Bagdonas E et al (2016) Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects. Cytotechnology 68(3):355–369. https://doi.org/10.1007/s10616-015-9895-4

36. Taniguchi N, Fujibayashi S, Takemoto M et al (2016) Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C Mater Biol Appl 59:690–701. https://doi.org/10.1016/j.msec.2015.10.069

37. Fukuda A, Takemoto M, Saito T et al (2011) Osteoinduction of porous Ti implants with a channel structure fabricated by selective laser melting. Acta Biomater 7(5):2327–2336. https://doi.org/10.1016/j.actbio.2011.01.037

38. Bai F, Zhang JK, Wang Z et al (2011) The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo. Biomed Mater 6(1):015007. https://doi.org/10.1088/1748-6041/6/1/015007

39. Zadpoor AA (2015) Bone tissue regeneration: the role of scaffold geometry. Biomater Sci 3(2):231–245. https://doi.org/10.1039/c4bm00291a

40. Nune KC, Kumar A, Misra RDK et al (2017) Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing. Colloids Surf B Biointerfaces 150:78–88. https://doi.org/10.1016/j.colsurfb.2016.09.050

41. Zheng JB, Zhao HY, Ouyang ZC et al (2022) Additively-manufactured PEEK/HA porous scaffolds with excellent osteogenesis for bone tissue repairing. Compos Part B Eng 232:109508. https://doi.org/10.1016/j.compositesb.2021.109508

42. Gómez S, Vlad MD, López J et al (2016) Design and properties of 3D scaffolds for bone tissue engineering. Acta Biomater 42:341–350. https://doi.org/10.1016/j.actbio.2016.06.032

43. Lu SW, Zhang BN, Niu JY et al (2024) Effect of fiber content on mechanical properties of carbon fiber-reinforced polyether-ether-ketone composites prepared using screw extrusion-based online mixing 3D printing. Addit Manuf 80:103976. https://doi.org/10.1016/j.addma.2024.103976


关于本刊

Bio-Design and Manufacturing(中文名《生物设计与制造》),简称BDM,是浙江大学主办的专业英文双月刊,主编杨华勇院士、崔占峰院士,2018年新创,2019年被SCI-E等库检索,2023年起改为双月刊,年末升入《2023年中国科学院文献情报中心期刊分区表》医学一区;2025再次入选医学大类一区Top期刊,同时在工程、生物医学小类也升至一区。2024年公布的最新影响因子为8.1,位列JCR的Q1区,13/122。


初审迅速:初审快速退稿,不影响作者投其它期刊。

审稿速度快:学科编辑24小时初审决定投稿是否进入同行评议阶段;平均评审录用周期约40天;文章录用后及时在线SpringerLink,一般两周左右即被SCI-E检索。

收稿方向 :先进制造(3D打印及生物处理工程等)、生物墨水与配方、组织与器官工程、医学与诊断装置、生物产品设计、仿生设计与制造等。

文章类型:Research Article, Review, Short Paper (包括Editorial, Perspective, Letter, Technical Note, Case Report, Lab Report, Negative Result等)。


期刊主页:

http://www.springer.com/journal/42242

http://www.jzus.zju.edu.cn/ (国内可下载全文)

在线投稿地址:

http://www.editorialmanager.com/bdmj/default.aspx


入群交流

围绕BDM刊物的投稿方向,本公众号建有“生物设计与制造”学术交流群,加小编微信号icefires212入群交流,或扫以下二维码

【声明】内容源于网络
0
0
lucky出海
跨境分享圈 | 每天分享跨境干货
内容 44198
粉丝 1
lucky出海 跨境分享圈 | 每天分享跨境干货
总阅读184.7k
粉丝1
内容44.2k