大数跨境
0
0

R语言 Julia以及全基因组选择

R语言 Julia以及全基因组选择 育种数据分析之放飞自我
2018-08-03
1
导读:最近在学Julia语言,想测试一下和R的区别,发现前辈的博客,翻译时不禁感慨,这是2018年了,博客是201


最近在学Julia语言,想测试一下和R的区别,发现前辈的博客,翻译时不禁感慨,这是2018年了,博客是2010年的,8年已过,我才听说Julia。但……不晚!


文章来源: https://www.r-bloggers.com/r-julia-and-genome-wide-selection/


有一些琐事的事情,以及一些代码片段,这些是我在2010年参加了基因组选择的summer school(http://taurus.ansci.iastate.edu/wiki/pages/E4o0S0C7/Course_materials.html),数据共有2000个个体,20000个SNP(0,1,2),然后使用MCMC 计算育种值,使用的是R语言。


```

nmarkers = 2000;    # number of markersstartMarker = 1981; # set to 1 to use allnumiter  = 2000;    # number of iterationsvara     = 1.0/20.0; 

# input datadata     = matrix(scan("trainData.out0"),ncol=nmarkers+2,byrow=TRUE);
nrecords = dim(data)[1];

beg = Sys.time()# x has the mean followed by the markersx = cbind(1,data[,startMarker:nmarkers]);y = data[,nmarkers+1];
a =  data[,nmarkers+2];# inital valuesnmarkers = nmarkers - startMarker + 1;
mean2pq = 0.5;                          # just an approximationscalea  = 0.5*vara/(nmarkers*mean2pq);  # 0.5 = (v-2)/v for v=4size = dim(x)[2];
b = array(0.0,size);
meanb = b;
b[1] = mean(y);
var  = array(0.0,size);# adjust y
 ycorr = y - x%*%b;                  # MCMC samplingfor (iter in 1:numiter){  # sample vare
  vare = ( t(ycorr)%*%ycorr )/rchisq(1,nrecords + 3);  # sample intercept
  ycorr = ycorr + x[,1]*b[1];
  rhs = sum(ycorr)/vare;
  invLhs = 1.0/(nrecords/vare);
  mean = rhs*invLhs;
  b[1] = rnorm(1,mean,sqrt(invLhs));
  ycorr = ycorr - x[,1]*b[1];
  meanb[1] = meanb[1] + b[1];  # sample variance for each locus
  for (locus in 2:size){
    var[locus] = (scalea*4+b[locus]*b[locus])/rchisq(1,4.0+1)
  }# sample effect for each locus
  for (locus in 2:size){    # unadjust y for this locus
    ycorr = ycorr + x[,locus]*b[locus];
    rhs = t(x[,locus])%*%ycorr/vare;
    lhs = t(x[,locus])%*%x[,locus]/vare + 1.0/var[locus];
    invLhs = 1.0/lhs;
    mean = invLhs*rhs;
    b[locus]= rnorm(1,mean,sqrt(invLhs));    #adjust y for the new value of this locus
    ycorr = ycorr - x[,locus]*b[locus];
    meanb[locus] = meanb[locus] + b[locus];
  }
}

Sys.time() - beg

meanb = meanb/numiter;
aHat  = x %*% meanb;

```

我使用Julia去做类似的事情:需要定义几个新的变量,将基因组数据,表型数据以及育种值数据读进矩阵里面,写几个循环,进行向量的运算。


```

nmarkers = 2000    # Number of markersstartmarker = 1981 # Set to 1 to use allnumiter = 2000     # Number of iterationsdata = dlmread("markers.csv", ',')
(nrecords, ncols) = size(data)

tic()#this is the mean and markers matrixX = hcat(ones(Float64, nrecords), data[:, startmarker:nmarkers])y = data[:, nmarkers + 1]a = data[:, nmarkers + 2]nmarkers = nmarkers - startmarker + 1vara = 1.0/nmarkersmean2pq = 0.5scalea  = 0.5*vara/(nmarkers*mean2pq) # 0.5 = (v-2)/v for v=4ndesign = size(X, 2)b = zeros(Float64, ndesign)meanb = zeros(Float64, ndesign)
b[1] = mean(y)varian  = zeros(Float64, ndesign)# adjust yycorr = y - X * b                  # MCMC samplingfor i = 1:numiter  # sample vare
  vare = dot(ycorr, ycorr )/randchi2(nrecords + 3)  # sample intercept
  ycorr = ycorr + X[:, 1] * b[1];
  rhs = sum(ycorr)/vare;
  invlhs = 1.0/(nrecords/vare);
  mn = rhs*invlhs;
  b[1] = randn() * sqrt(invlhs) + mn;
  ycorr = ycorr - X[:, 1] * b[1];
  meanb[1] = meanb[1] + b[1];  # sample variance for each locus
  for locus = 2:ndesign
      varian[locus] = (scalea*4 + b[locus]*b[locus])/randchi2(4.0 + 1);
  end  # sample effect for each locus
  for locus = 2:ndesign      # unadjust y for this locus
      ycorr = ycorr + X[:, locus] * b[locus];
      rhs = dot(X[:, locus], ycorr)/vare;
      lhs = dot(X[:, locus], X[:, locus])/vare + 1.0/varian[locus];
      invlhs = 1.0/lhs;
      mn = invlhs * rhs;
      b[locus] = randn() * sqrt(invlhs) + mn;      #adjust y for the new value of this locus
      ycorr = ycorr - X[:, locus] * b[locus];
      meanb[locus] = meanb[locus] + b[locus];
  end
end

toc()meanb = meanb/numiter;aHat  = X * meanb;

```


这两个代码比较相似,但是也有一些不同:

  • 第一个读入的数据是二进制的,我不知道Julia如何操作,所以我就将其转为csv,然后读取。

  • 为了防止名称重复,R中可以随意命名,但是Julia不行,所以我在Julia程序中进行了修改。

  • R中可以赋值,a=b,你改变a和b都没问题,但是Julia中你动了b,a也变了。语法不太一样。

  • Julia中向量和数组操作不太一样。


因为我的代码太粗糙了,Julia的代码在速度上不是很突出。当我变化了marker的数目(数据量更大),发现Julia的运算速度大约是R的2.8倍。Julia在官网上宣称,在进行数值运算时,速度是R的100倍,但是我的结果没有达到这么高。


在1996年或者1997年是,我由SAS转到了ASReml进行基因组数据分析,它大约提高了1~2倍的速度,而且支持了更多的模型。


现在,又到了更换软件的时候了,由R转到Julia,特别是基因组选择方面,Julia性能非常优秀。


看一下Julia的logo,特别的漂亮!!!

【声明】内容源于网络
0
0
育种数据分析之放飞自我
本公众号主要介绍动植物育种数据分析中的相关问题, 算法及程序代码.
内容 912
粉丝 0
育种数据分析之放飞自我 本公众号主要介绍动植物育种数据分析中的相关问题, 算法及程序代码.
总阅读162
粉丝0
内容912