大数跨境
0
0

20个Pandas数据实战案例,干货多多

20个Pandas数据实战案例,干货多多 关于数据分析与可视化
2022-03-03
0
导读:干货多多
今天我们讲一下pandas当中的数据过滤内容,小编之前也写过也一篇相类似的文章,但是是基于文本数据的过滤,大家有兴趣也可以去查阅一下。
下面小编会给出大概20个案例来详细说明数据过滤的方法,首先我们先建立要用到的数据集,代码如下
import pandas as pd
df = pd.DataFrame({
    "name": ["John","Jane","Emily","Lisa","Matt"],
    "note": [92,94,87,82,90],
    "profession":["Electrical engineer","Mechanical engineer",
                  "Data scientist","Accountant","Athlete"],
    "date_of_birth":["1998-11-01","2002-08-14","1996-01-12",
                     "2002-10-24","2004-04-05"],
    "group":["A","B","B","A","C"]
})

output

    name  note           profession date_of_birth group
0   John    92  Electrical engineer    1998-11-01     A
1   Jane    94  Mechanical engineer    2002-08-14     B
2  Emily    87       Data scientist    1996-01-12     B
3   Lisa    82           Accountant    2002-10-24     A
4   Matt    90              Athlete    2004-04-05     C

筛选表格中的若干列

代码如下

df[["name","note"]]

output

    name  note
0   John    92
1   Jane    94
2  Emily    87
3   Lisa    82
4   Matt    90

再筛选出若干行

我们基于上面搜索出的结果之上,再筛选出若干行,代码如下

df.loc[:3, ["name","note"]]

output

    name  note
0   John    92
1   Jane    94
2  Emily    87
3   Lisa    82

根据索引来过滤数据

这里我们用到的是iloc方法,代码如下

df.iloc[:3, 2]

output

0    Electrical engineer
1    Mechanical engineer
2         Data scientist

通过比较运算符来筛选数据

df[df.note > 90]

output

   name  note           profession date_of_birth group
0  John    92  Electrical engineer    1998-11-01     A
1  Jane    94  Mechanical engineer    2002-08-14     B

dt属性接口

dt属性接口是用于处理时间类型的数据的,当然首先我们需要将字符串类型的数据,或者其他类型的数据转换成事件类型的数据,然后再处理,代码如下
df.date_of_birth = df.date_of_birth.astype("datetime64[ns]")
df[df.date_of_birth.dt.month==11]

output

   name  note           profession date_of_birth group
0  John    92  Electrical engineer    1998-11-01     A

或者我们也可以

df[df.date_of_birth.dt.year > 2000]

output

   name  note           profession date_of_birth group
1  Jane    94  Mechanical engineer    2002-08-14     B
3  Lisa    82           Accountant    2002-10-24     A
4  Matt    90              Athlete    2004-04-05     C

多个条件交集过滤数据

当我们遇上多个条件,并且是交集的情况下过滤数据时,代码应该这么来写
df[(df.date_of_birth.dt.year > 2000) &  
   (df.profession.str.contains("engineer"))]

output

   name  note           profession date_of_birth group
1  Jane    94  Mechanical engineer    2002-08-14     B

多个条件并集筛选数据

当多个条件是以并集的方式来过滤数据的时候,代码如下

df[(df.note > 90) | (df.profession=="Data scientist")]

output

    name  note           profession date_of_birth group
0   John    92  Electrical engineer    1998-11-01     A
1   Jane    94  Mechanical engineer    2002-08-14     B
2  Emily    87       Data scientist    1996-01-12     B

Query方法过滤数据

Pandas当中的query方法也可以对数据进行过滤,我们将过滤的条件输入

df.query("note > 90")

output

   name  note           profession date_of_birth group
0  John    92  Electrical engineer    1998-11-01     A
1  Jane    94  Mechanical engineer    2002-08-14     B

又或者是

df.query("group=='A' and note > 89")

output

   name  note           profession date_of_birth group
0  John    92  Electrical engineer    1998-11-01     A

nsmallest方法过滤数据

pandas当中的nsmallest以及nlargest方法是用来找到数据集当中最大、最小的若干数据,代码如下
df.nsmallest(2, "note")

output

    name  note      profession date_of_birth group
3   Lisa    82      Accountant    2002-10-24     A
2  Emily    87  Data scientist    1996-01-12     B
df.nlargest(2, "note")

output

   name  note           profession date_of_birth group
1  Jane    94  Mechanical engineer    2002-08-14     B
0  John    92  Electrical engineer    1998-11-01     A

isna()方法

isna()方法功能在于过滤出那些是空值的数据,首先我们将表格当中的某些数据设置成空值
df.loc[0, "profession"] = np.nan
df[df.profession.isna()]

output

   name  note profession date_of_birth group
0  John    92        NaN    1998-11-01     A

notna()方法

notna()方法上面的isna()方法正好相反的功能在于过滤出那些不是空值的数据,代码如下
df[df.profession.notna()]

output

    name  note           profession date_of_birth group
1   Jane    94  Mechanical engineer    2002-08-14     B
2  Emily    87       Data scientist    1996-01-12     B
3   Lisa    82           Accountant    2002-10-24     A
4   Matt    90              Athlete    2004-04-05     C

assign方法

pandas当中的assign方法作用是直接向数据集当中来添加一列

df_1 = df.assign(score=np.random.randint(0,100,size=5))
df_1

output

    name  note           profession date_of_birth group  score
0   John    92  Electrical engineer    1998-11-01     A     19
1   Jane    94  Mechanical engineer    2002-08-14     B     84
2  Emily    87       Data scientist    1996-01-12     B     68
3   Lisa    82           Accountant    2002-10-24     A     70
4   Matt    90              Athlete    2004-04-05     C     39

explode方法

explode()方法直译的话,是爆炸的意思,我们经常会遇到这样的数据集

  Name            Hobby
0   吕布  [打篮球, 玩游戏, 喝奶茶]
1   貂蝉       [敲代码, 看电影]
2   赵云        [听音乐, 健身]
Hobby列当中的每行数据都以列表的形式集中到了一起,而explode()方法则是将这些集中到一起的数据拆开来,代码如下
 Name Hobby
0   吕布   打篮球
0   吕布   玩游戏
0   吕布   喝奶茶
1   貂蝉   敲代码
1   貂蝉   看电影
2   赵云   听音乐
2   赵云    健身

当然我们会展开来之后,数据会存在重复的情况,

df.explode('Hobby').drop_duplicates().reset_index(drop=True)

output

 Name Hobby
0   吕布   打篮球
1   吕布   玩游戏
2   吕布   喝奶茶
3   貂蝉   敲代码
4   貂蝉   看电影
5   赵云   听音乐
6   赵云    健身

10张图带你看清俄乌冲突的始末

2022-02-28

Python多线程与多进程最全整理,太干货了!

2022-02-26

厉害了,用Python绘制动态可视化图表,并保存成gif格式

2022-02-21

年轻人为什么会猝死?这篇Python数据分析报告不可错过!

2022-02-24

【干货分享】推荐5个可以让你事半功倍的Python自动化脚本

2022-02-14

分享、收藏、点赞、在看安排一下?


【声明】内容源于网络
0
0
关于数据分析与可视化
本公众号定期分享数据分析与可视化干货文章,并有时结合热点话题进行深入讨论,希望您会喜欢,要是哪里写的不好,也渴望倾听您的想法和意见,感谢!❤️
内容 403
粉丝 0
关于数据分析与可视化 本公众号定期分享数据分析与可视化干货文章,并有时结合热点话题进行深入讨论,希望您会喜欢,要是哪里写的不好,也渴望倾听您的想法和意见,感谢!❤️
总阅读117
粉丝0
内容403