大数跨境
0
0

Pandas 2.0 vs Polars: 孰优孰劣?!

Pandas 2.0 vs Polars: 孰优孰劣?! 关于数据分析与可视化
2023-05-19
1
来源:Deephub Imba

前几天的文章,我们已经简单的介绍过Pandas 和Polars的速度对比。刚刚发布的Pandas 2.0速度得到了显著的提升。但是本次测试发现NumPy数组上的一些基本操作仍然更快。并且Polars 0.17.0,也在上周发布,并且也提到了性能的改善,所以我们这里做一个更详细的关于速度方面的评测。

本文将比较Pandas 2.0(使用Numpy和Pyarrow作为后端)和Polars 0.17.0的速度。并且介绍使用Polars库复现一些简单到复杂的Pandas代码,这样也算是对Polars的一个简单介绍。另外测试将在4 cpu和32 GB RAM上进行。

安装

可以通过pip命令进行安装

 pip install polars==0.17.0 # Latest version
 
 pip install pandas==2.0.0  # Latest pandas version

我们需要使用下面的库:

 import pandas as pd
 import polars as pl
 import numpy as np
 import time

为了评估性能,我们将使用一个由3000万行和15列组成的合成数据集。该数据集由8个分类特征和7个数字特征组成,是人工生成的。数据集的链接在最后会提供。

下面显示了该数据集的一个示例

读取数据集

比较两个库读取parquet文件的时间。我使用了下面的代码,并使用%%time来获取代码执行的时间。

 train_pd=pd.read_parquet('./train.parquet') #Pandas dataframe
 
 train_pl=pl.read_parquet('./train.parquet') #Polars dataframe

可以看到Polars和Pandas 2.0在速度方面表现相似(因为都是arrow)但是Pandas(使用Numpy后端)需要两倍的时间来完成这个任务(这可能是因为有类型转换的原因,因为最终要把类型转成np的类型)。

聚合操作

下面的代码,该代码计算聚合(最小值、最大值、平均值)。

 # pandas query
 train_pd[nums].agg(['min','max','mean','median','std')
 train[cats].agg(['nunique'])
 
 # Polars query
 train_pl.with_columns([
     pl.col(nums).min().suffix('_min'),
     pl.col(nums).max().suffix('_max'),
     pl.col(nums).mean().suffix('_mean'),
     pl.col(nums).median().suffix('_median'),
     pl.col(nums).std().suffix('_std'),
     pl.col(cats).nunique().suffix('_unique'),
 ])

对于简单的聚合,Pandas在语法和性能方面会更好,但是差距并不大。

筛选操作

选择操作涉及根据条件进行查询和提取,例如下面代码

查询1:当nums_8小于10时,统计唯一值。

 # Polars filter and select
 train_pl.filter(pl.col("num_8") <= 10).select(pl.col(cats).n_unique())
 
 # Pandas filter and select
 train_pd[train_pd['num_8']<=10][cats].nunique()

查询2:当cat_1 = 1时,计算所有数值列的平均值。

 # Polars filter and select
 train_pl.filter(pl.col("cat_1") == 1).select(pl.col(nums).mean())
 
 # Pandas filter and select
 train_pd[train_pd['cat_1']==1][nums].mean()

两个查询的结果如下:

在性能方面,Polars的数值filter速度要快2-5倍,而Pandas需要编写的代码更少。Pandas在处理字符串(分类特征)时速度较慢,这个我们在以前的文章中已经提到过,并且使用df.query函数在语法上更简洁,并且在大数据量的情况下会更快,这个如果有人有兴趣,我们再单独总结。

分组操作

分组操作是机器学习中用于创建聚合特征的基本操作之一,我在下面的通过user进行分组后,进行聚合来测试性能

函数1:统计cat_1的聚合特征

函数2:num_7的均值特征

函数3:所有数值列的平均聚合特征

函数4:计算分类列的聚合特性

 nums=['num_7','num_8', 'num_9', 'num_10', 'num_11', 'num_12', 'num_13', 'num_14','num_15']
 cats=['cat_1', 'cat_2', 'cat_3', 'cat_4', 'cat_5', 'cat_6']
 
 # Pandas Functions
 Function_1= train_pd.groupby(['user'])['cat_1'].agg('count')   #Function 1
 Function_2= train_pd.groupby(['user'])['num_7'].agg('mean')    #Function 2
 Function_3= train_pd.groupby(['user'])[nums].agg('mean')       #Function 3
 Function_4= train_pd.groupby(['user'])[cats].agg('count')      #Function 4
 
 
 # Polars Functions
 Function_1= train_pl.groupby('user').agg(pl.col('cat_1').count()) #Function 1
 Function_2= train_pl.groupby('user').agg(pl.col('num_7').mean())  #Function 2
 Function_3= train_pl.groupby('user').agg(pl.col(nums).mean())     #Function 3
 Function_4= train_pl.groupby('user').agg(pl.col(cats).count())    #Function 4

可以看到Polars非常快。但是Pyarrow后端的Pandas 2.0在所有情况下都明显比Polars和Pandas 2.0 (numpy后端)慢。

我们将分组变量的数量从1增加到5,看看结果:

 # PANDAS: TESTING GROUPING SPEED ON 5 COLUMNS
 for cat in ['user', 'cat_1', 'cat_2', 'cat_3', 'cat_4']:
   cols+=[cat]
   st=time.time()
   temp=train_pd.groupby(cols)['num_7'].agg('mean')
   en=time.time()
   print(cat,':',en-st)
 
 
 # POLARS: TESTING GROUPING SPEED ON 5 COLUMNS
 for cat in ['user', 'cat_1', 'cat_2', 'cat_3', 'cat_4']:
   cols+=[cat]
   st=time.time()
   temp=train_pl.groupby(cols).agg(pl.col('num_7').mean())
   en=time.time()
   print(cat,':',en-st)
   del temp

下图中没有显示Pyarrow的Pandas 2.0,因为求值需要1000多秒。

对于group操作来说Polars是首选,但是Pandas在分组时默认删除空值,而Polars库则不会,这是一个小小的差异,在使用时需要注意。

排序操作

下面的代码,可以基于一个或多个列(升序或降序)快速对数据进行排序。

 cols=['user','num_8'] # columns to be used for sorting
 
 #Sorting in Polars
 train_pl.sort(cols,descending=False)
 
 # Sorting in Pandas
 train_pd.sort_values(by=cols,ascending=True)

从上图可以看出,对于排序和分组等复杂情况,Polars仍然是最快的库。Pandas对数据进行简单排序需要几分钟的时间,但在polar中,复杂的排序函数可以在不超过15秒的时间内计算出来。

总结

本文对Pandas和polar之间性能差异做了一个对比总结。Pandas在语法上更有吸引力(因为用的多习惯了),而Polars在处理更大的数据时提供了更好的吞吐量。

但是由于Polars是一个较新的库,从Pandas过渡到其他库具是有挑战性的。通过了解这两种强大工具之间的差异,我们可以根据自己的特定需求选择最佳选项,并实现更高效和有效的数据分析。

本文的数据下载:

https://www.kaggle.com/datasets/chaudharypriyanshu/polars-20-vs-pandas-dataset-for-comparison/settings



NO.1
往期推荐
Historical articles

分享 5 款超级好用的Python可视化工具,建议收藏!!



【原创】强烈推荐三个可视化模块,绘制的图表真的很酷炫!!



【原创】用Matplotlib绘制的图表,真的是太惊艳了!!



【原创】用Python来绘制甘特图并制作可视化大屏,太方便了!!


分享、收藏、点赞、在看安排一下?


【声明】内容源于网络
0
0
关于数据分析与可视化
本公众号定期分享数据分析与可视化干货文章,并有时结合热点话题进行深入讨论,希望您会喜欢,要是哪里写的不好,也渴望倾听您的想法和意见,感谢!❤️
内容 403
粉丝 0
关于数据分析与可视化 本公众号定期分享数据分析与可视化干货文章,并有时结合热点话题进行深入讨论,希望您会喜欢,要是哪里写的不好,也渴望倾听您的想法和意见,感谢!❤️
总阅读68
粉丝0
内容403