大数跨境
0
0

跟着Nature Methods学画图:R语言ggplot2散点图并添加拟合曲线和置信区间

跟着Nature Methods学画图:R语言ggplot2散点图并添加拟合曲线和置信区间 小明的数据分析笔记本
2021-02-24
0
导读:ggpubr这个包中我自己比较常用的是ggarrange()拼图函数

今天的推文继续学习A single-cell atlas of the peripheral immune response in patients with severe COVID-19论文中的代码。今天推文的主要内容是介绍如何使用R语言绘制散点图并且添加拟合曲线和置信区间

这篇论文是在简书 土豆学生信 分享的内容看到的。简书的链接是 https://www.jianshu.com/p/bbf9cb13b41a

论文是

image.png

论文对应的代码是公开的 https://github.com/ajwilk/2020_Wilk_COVID

image.png

今天重复的内容是论文中的 补充材料Fig4中的小a中的第三个小图

image.png

数据准备好是如下格式

需要示例数据可以直接在文末留言

第一步读入数据
mydf<-read.csv("Single_Cell/covid_metadata_c.csv",header=T,row.names = 1)
dim(mydf)
mydf

这里作图用到的是ggscatter()函数,这个函数来自ggpubr这个包。

最基本的散点图
library(ggpubr)
ggscatter(mydf,x="DPS",y="ISG")

这里需要注意的是想x,y后面跟着的值需要加双引号

添加拟合曲线
p1<-ggscatter(mydf,x="DPS",y="ISG",
          add = "reg.line")
添加置信区间
p2<-ggscatter(mydf,x="DPS",y="ISG",
          add = "reg.line",
          conf.int = T)
更改坐标轴标签
p3<-ggscatter(mydf,x="DPS",y="ISG",
              add = "reg.line",
              conf.int = T)+
  labs(y = "Mean ISG module score"
       x = "Days post-symptom onset")
添加相关系数和p值
p4<-ggscatter(mydf,x="DPS",y="ISG",
              add = "reg.line",
              conf.int = T)+
  labs(y = "Mean ISG module score"
       x = "Days post-symptom onset")+
  stat_cor(label.x = 8, label.y = 0.2)
最后是拼图
ggarrange(p1,p2,p3,p4,
          ncol = 2,
          nrow = 2,
          labels = c("p1","p2","p3","p4"))

最终的结果如下

image.png

欢迎大家关注我的公众号

小明的数据分析笔记本

公众号二维码.jpg


【声明】内容源于网络
0
0
小明的数据分析笔记本
分享R语言和python在生物信息领域做数据分析和数据可视化的简单小例子;偶尔会分享一些组学数据处理相关的内容
内容 971
粉丝 0
小明的数据分析笔记本 分享R语言和python在生物信息领域做数据分析和数据可视化的简单小例子;偶尔会分享一些组学数据处理相关的内容
总阅读350
粉丝0
内容971